Advances in Gerontology

, Volume 3, Issue 4, pp 255–260 | Cite as

Influence of environment on aging of living systems: A mathematical model

  • A. A. Viktorov
  • V. A. Kholodnov
  • V. D. Gladkikh
  • A. V. Alekhnovich
Article

Abstract

A mathematical model simulating the influence of environment (ENV) on aging of living systems is proposed. The model is based on the concept of continuous adaptation of a biological system (BS) to ENV from the moment of its birth. The adaptation rate as the rate of risk of destruction accumulation is regarded as a competition between two concurrent processes—BS destruction and recombination of damages defined by kinetics of autocatalytic chemical reactions. The effect of ENV is taken into account by model parameters, which in general are time-dependent. The model reflects the rules of thermodynamics and gerontology as well as the typical results of medical experiments.

Keywords

mathematical model aging adaptation destruction recombination chemical reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekhnovich, A.V., Ivanov, V.B., Il’yashenko, K.K., and El’kov, A.N., Kompensatornye mekhanizmy i prisposobitel’nye protsessy pri ostrykh otravleniyakh psikhotropnymi preparatami (Compensatory Mechanisms and Adaptation to Acute Poisoning by Psychotropic Drugs), Moscow: Vash Poligraf. Partner, 2010.Google Scholar
  2. 2.
    Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Senescence), St. Petersburg: Nauka, 2008, vol. 1.Google Scholar
  3. 3.
    Viktorov, A.A., A method of forecasting of durability of solids affected by thermal, chemical, and radiation factors, Doctoral Sci. (Tech.) Dissertation, Moscow, 1990.Google Scholar
  4. 4.
    Vodop’yanov, P.A., Ustoichivost’ v razvitii zhivoi prirody (Importance of Resistnace in Development of Nature), Minsk: Nauka i Tekhnika, 1974, pp. 34–37.Google Scholar
  5. 5.
    Golikov, S.N., Sanotskii, I.V., and Tiunov, L.A., Obshchie mekhanizmy toksicheskogo deistviya (Common Mechanisms of Intoxication), Leningrad: Meditsina, 1986.Google Scholar
  6. 6.
    Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, sum, ryadov, i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Izd. Fiz.-Mat. Liter., 1963.Google Scholar
  7. 7.
    Gribanova, T.N., Novosel’tsev, V.N., and Khal’fin, R.A., Mathematical model of the life cycle of organism (habitat and life duration), Ezheg. Nats. Gerontol. Tsentra, 1998, no. 1, pp. 57–63.Google Scholar
  8. 8.
    Dontsov, V.I., Krut’ko, V.N., and Podkolzin, A.A., Starenie: mekhanizmy i puti preodoleniya (Senescence: Mechanism and Overcoming Methods), Moscow: Bioinformservis, 1997.Google Scholar
  9. 9.
    El’kov, A.N., Il’yashenko, K.K., Gol’dfrab, Yu.S., et al., Experience of implementation of factorial analysis in clinical toxicology, Preprint of Keldysh Inst. of Applied Mathematics, Ross. Acad. Sci., Moscow, 2005, no. 127.Google Scholar
  10. 10.
    Eremin, E.N., Osnovy khimicheskoi kinetiki (Fundamental Chemical Kinetics), Moscow: Vysshaya Shkola, 1976.Google Scholar
  11. 11.
    Zhurkov, S.N. and Narzulaev, B.N., Time dependence of the strength of solids, Zh. Tekh. Fiz., 1953, vol. 23, no. 10, pp. 1677–1689.Google Scholar
  12. 12.
    Zel’dovich, Ya.B. and Myshkis, A.D., Elementy prikladnoi matematiki (Elements of Applied Mathematics), Moscow: Nauka, 1972, p. 69.Google Scholar
  13. 13.
    Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M., Matematicheskaya teoriya goreniya i vzryva (The Mathematical Theory of Combustion and Explosion), Moscow: Nauka, 1980.Google Scholar
  14. 14.
    Ivanitskii, G.R., 21st Century: What is life from the perspective of physics?, Phys.-Usp., 2010, vol. 53, no. 4, pp. 327–356.CrossRefGoogle Scholar
  15. 15.
    Krut’ko, V.N., Slavin, M.B., and Smirnova, T.M., Matematicheskie osnovaniya gerontologii (Mathematical Principles of Gerontology), Krut’ko, V.N., Ed., Moscow: Editorial URSS, 2002.Google Scholar
  16. 16.
    Lisitsyn, Yu.P. and Petlenko, V.P., Determinatsionnaya teoriya meditsiny: doktrina adaptivnogo reagirovaniya (Determination Theory of Medicine: Doctrine of Adaptive Response), St. Petersburg: Gippokrat, 1992.Google Scholar
  17. 17.
    Mashintsov, E.A., Kuznetsov, A.A., Lebedev, A.M., and Novosel’tsev, V.N., Matematicheskie modeli i metody otsenki ekologicheskogo sostoyaniya territorii (Mathematical Models and Assessment Methods of Environmental Conditions of the Territories), Moscow: Izd. Fiz.-Mat. Liter., 2010.Google Scholar
  18. 18.
    Myakotnykh, V.S., Osnovnye teorii stareniya: kratkaya annotatsiya dlya prakticheskikh vrachei (General Theories of Senescence: Brief Annotation for General Practitioners), Moscow: Gos. Vestn., 2005, no. 2, pp. 25–28.Google Scholar
  19. 19.
    Nikolis, G. and Prigozhin, I., Samoorganizatsiya v neravnovesnykh sistemakh (Self-Organization in Nonequilibrium Systems) Moscow: Mir, 1979.Google Scholar
  20. 20.
    Semenov, N.N., Kinetics of complex homogeneous reactions, Zh. Fiz.-Khim., 1943, vol. 17, no. 4, p. 187.Google Scholar
  21. 21.
    Strehler, B., Time. Cells and Aging, New York: Academic Press, 1962.Google Scholar
  22. 22.
    Trincher, K.S., Biologiya i informatsiya. Elementy biologicheskoi termodinamiki (Biology and Information. Elements of Biological Thermodynamics), Moscow: Nauka, 1964.Google Scholar
  23. 23.
    Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967, 2nd ed.Google Scholar
  24. 24.
    Kholodnov, V.A., Description of the Geiger mode in avalanche p-i-n photodiodes by elementary functions, Tech. Phys. Lett., 2009, vol. 35, no. 8, pp. 744–748.CrossRefGoogle Scholar
  25. 25.
    Shafirkin, A.V., Shtemberg, A.S., Esaulenko, I.E., and Popov, V.I., Ekologiya, sotsial’nyi stress, zdorov’e naseleniya i demograficheskie problemy Rossii (Ecology, Social Stress, Health of Population, and Demographic Problems of Russia), Voronezh: Nauchnaya Kniga, 2009.Google Scholar
  26. 26.
    Ekologicheskaya pediatriya (Ecological Pediatrics), Tsaregorodtseva, A.D., Ed., Moscow: Triada-X, 2011.Google Scholar
  27. 27.
    Groves, C., Tan, C.H., David, J.P.R., et al., Exponential time response in analogue and Geiger mode avalanche photodiodes, IEEE Trans. Electron Devices, 2005, vol. 52, no. 7, pp. 1527–1534.CrossRefGoogle Scholar
  28. 28.
    Schroedinger, E., What Is Life?, Cambridge Univ. Press, 1944, p. 12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Viktorov
    • 1
  • V. A. Kholodnov
    • 2
  • V. D. Gladkikh
    • 3
  • A. V. Alekhnovich
    • 4
  1. 1.Scientific and Practical Center for Medical and Ecological SafetyMoscowRussia
  2. 2.Kotelnikov Institute of Radioengineering and ElectronicsMoscowRussia
  3. 3.Scientific and Production Center PharmprotectionRussian Federal Medical and Biological AgencyKhimki, Moscow oblastRussia
  4. 4.Central Children’s Clinical HospitalRussian Federal Medical and Biological AgencyMoscowRussia

Personalised recommendations