Advances in Gerontology

, Volume 3, Issue 1, pp 61–66 | Cite as

Influence of melatonin on neutrophil-to-lymphocyte ratio in mammalian blood depending on age of the animal

  • L. B. Uzenbaeva
  • I. A. Vinogradova
  • A. G. Kizhina
  • O. A. Prokopenko
  • A. I. Malkiel
  • A. I. Goranskii
  • S. Lapinski
  • V. A. Ilyukha
Article

Abstract

The influence of melatonin on the age dynamics of neutrophils and lymphocytes was investigated in the blood of laboratory rats kept under different light conditions and predatory mammals, including farmer silver foxes and raccoon dogs kept under natural light (NL). The decrease in the lymphocyte level, increase in the neutrophil content, and changes in the ratio of neutrophils to lymphocytes were detected in aged rats (24 months) kept under natural light (NL) and standard light (LD) and adult silver foxes (2–5 years) kept under natural light compared to juvenile animals. The reduced lymphocyte level and increased neutrophil level in rats under constant light (LL) were revealed at younger ages. The effect of melatonin was detected in aged rats and adult silver foxes and not observed in juvenile animals.

Keywords

leukocytes leukogram light condition rat silver fox raccoon dog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrashova, T.V., Sokolova, A.P., Selezneva, A.I., et al., Variability of Biochemical and Hematological Parameters of Laboratory Rats Depending on Line and Age (Message I), Mezhdunar. Vestn. Veterinar., 2010, no. 2, pp. 55–60.Google Scholar
  2. 2.
    Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Senescece), St. Petersburg: Nauka, 2003.Google Scholar
  3. 3.
    Arushanyan, E.B. and Beiker, E.V., Melatonin and the Blood System, Eksper. Klin. Farmakol., 2006, vol. 69, no. 3, pp. 74–79.Google Scholar
  4. 4.
    Garkavi, L.Kh., Kvakina, E.B., and Ukolova, M.A., Adaptatsionnye reaktsii i rezistentnost’ organizma (Adaptive Reactions and Resistance of Organism), Rostovon-Don: Rostov. Univ., 1990.Google Scholar
  5. 5.
    Dil’man, V.M., Chetyre modeli meditsiny (Four Models of Medicine), Moscow: Meditsina, 1987.Google Scholar
  6. 6.
    Kalinina, S.N., Fartysheva, M.V., Podlepina, L.G., and Ilyukha, V.A., Specific Influence of Melakril on Antioxidative System of Three Different Color Minks, Krolikovodstvo i Zverovodstvo, 2008, no. 6, pp. 11–13.Google Scholar
  7. 7.
    Kozinets, G.I., Vysotskii, V.V., Pogorelov, V.M., et al., Krov’ i infektsiya (The Blood and Infection), Moscow: Triada-Farm, 2001.Google Scholar
  8. 8.
    Kolesnikov, L.A., Peculiarities of Diurnal Rhythm of Biosynthetic Activity of Epiphysis in Relatively Wild and Domestic Silver-Black Fox, Genetika, 1997, vol. 33, no. 8, pp. 1144–1149.Google Scholar
  9. 9.
    Pimenov, Yu.S., The Blood of Healthy People during Senescence, Gematol. Transfuziol., 1993, no. 3, pp. 43–45.Google Scholar
  10. 10.
    Uzenbaeva, L.B., Vinogradova, I.A., Golubeva, A.G., et al., Influence of Melatonin and Epithalon on Leukogram Composition and Activity of Alkaline Phosphatase of the Rat Blood Leukocytes in Ontogenesis at Different Illumination, Usp. Gerontol., 2008, vol. 21, no. 3, pp. 294–401.Google Scholar
  11. 11.
    Fedorova, O.I., Kondurtsev, V.A., Davydkin, I.L., and Limareva, L.V., Reactions of Peripheral Blood in Elderly Patients during Common Diseases, Klin. Med., 2008, no. 2, pp. 49–51.Google Scholar
  12. 12.
    Eticheskaya ekspertiza biomeditsinskikh issledovanii: Prakticheskie rekomendatsii (Ethical Expertise of Biomedical Studies: Practical Recommendations), Belousov, Yu.B., Ed., Moscow, 2005.Google Scholar
  13. 13.
    Anisimov, V.N., Pliss, G.B., Iogannsen, M.G., et al., Spontaneous Tumors in Outbred LIO Rats, J. Exp. Clin. Cancer Res., 1989, vol. 8, no. 4, pp. 254–262.Google Scholar
  14. 14.
    Bilbo, S.D., Dhabhar, F.S. Viswanathan, K., et al., Short Day Lengths Augment Stress-Induced Enhancement of Skin Immune Function, Proc. Natl. Acad. Sci. USA, 2002a, vol. 99, no. 6, pp. 4067–4072.PubMedCrossRefGoogle Scholar
  15. 15.
    Bilbo, S.D., Drazen, D.L., Quan, N., et al., Short Day Lengths Attenuate the Symptoms of Infection in Siberian Hamsters, Proc. Soc. Lond., B, 2002, vol. 269, pp. 447–454.CrossRefGoogle Scholar
  16. 16.
    Ellis, L.C., Melatonin Reduces Mortality from Aleutian Disease in Mink (Mustela vison), J. Pineal Res., 1996, vol. 21, pp. 214–217.PubMedCrossRefGoogle Scholar
  17. 17.
    Esquifino, A.I., Pandi-Perumal, S.R., and Cardinali, D.P., Circadian Organization of the Immune Response: A Role for Melatonin, Clin. Appl. Immunol. Rev., 2004, vol. 4, pp. 423–433.CrossRefGoogle Scholar
  18. 18.
    Greeley, E.H., Kealy, R.D., Ballam, J.M., et al., The Influence of Age on the Canine Immune System, Vet. Immunol. Immunopathol., 1996, vol. 55, pp. 1–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Guerrero, J.M. and Reiter, R.J., Melatonin-Immune System Relationships, Curr. Top. Med. Chem., 2002, vol. 2, pp. 167–179.PubMedCrossRefGoogle Scholar
  20. 20.
    Haldar, C., Singh, R., and Guchhait, P., Relationship between the Annual Rhythms in Melatonin and Immune System Status in the Tropical Palm Squirrel, Funambulus pennanti, Chronobiol. Int., 2001, vol. 18, pp. 61–69.CrossRefGoogle Scholar
  21. 21.
    Heaton, P.R., Blount, D.G., Mann, S.J., et al., Assessing Age-Related Changes in Peripheral Blood Leukocyte Phenotypes in Domestic Shorthaired Cats Using Flow Cytometry, J. Nutr., 2002, vol. 132, pp. 1607S–1609S.PubMedGoogle Scholar
  22. 22.
    Lorenzo, G.D., Balistreri, G.R., Candore, G., et al., Granulocyte and Natural Killer Activity in the Elderly, Mech. Aging Dev., 1999, vol. 108, pp. 25–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Maestroni, G.J., The Immunotherapeutic Potential of Melatonin, Exp. Opin. Invest. Drugs, 2001, vol. 10, pp. 467–476.CrossRefGoogle Scholar
  24. 24.
    Maestroni, G.J.M. and Conti, A., Melatonin in Relation to the Immune System, in Melatonin Biosynthesis, Physiological Effect and Clinical Applications, Yu, H.S. and Reiter, R.J., Eds., Boca Raton: CRC Press, 1993, pp. 289–310.Google Scholar
  25. 25.
    Maestroni, G.J.M., Conti, A., and Pierpaoli, W., Role of the Pineal Gland in Immunity. Circadian Synthesis and Release of Melatonin Modulates the Antibody Response and Antagonized the Immunesupressive Effect of Corticosterone, J. Neuroimmunol., 1986, vol. 13, pp. 19–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Maestroni, G.J., Conti, A., and Pierpaoli, W., Pineal Melatonin, Its Fundamental Immunoregulatory Role in Aging and Cancer, Ann. N.Y. Acad. Sci., 1988, vol. 521, pp. 140–148.PubMedCrossRefGoogle Scholar
  27. 27.
    Moore, C.B., Siopes, T.D., Steele, C.T., and Underwood, H., Pineal Melatonin Secretion, but not Ocular Melatonin Secretion, is Sufficient to Maintain Normal Immune Responses in Japanese Quail (Coturnix coturnix japonica), Gen. Comp. Endocr., 2002, vol. 126, pp. 352–358.PubMedCrossRefGoogle Scholar
  28. 28.
    Nelson, R.J., Seasonal Immune Function and Sickness Responses, Trends Immunol., 2004, vol. 25, pp. 187–192.PubMedCrossRefGoogle Scholar
  29. 29.
    Nelson, R.J. and Drazen, D.L., Melatonin Mediates Seasonal Changes in Immune Function, Ann. N.Y. Acad. Sci., 2000, vol. 917, pp. 404–415.PubMedCrossRefGoogle Scholar
  30. 30.
    Pawelec, G., Akbar, A., Caruso, C., et al., Is Immunosenescence Infectious?, Trends Immunol., 2004, vol. 25, pp. 406–410.PubMedCrossRefGoogle Scholar
  31. 31.
    Piotrowska, A., Szymeczko, R., Ozgo, M., et al., Morphological and Mineral Characteristics of Peripheral Blood in Female Polar Fox in Relation to Age, Folia Biol. (Krakow), 2008, vol. 56, nos. 3–4, pp. 263–267.CrossRefGoogle Scholar
  32. 32.
    Prendergast, B.J., Hotchkiss, A.K., and Nelson, R.J., Photoperiodic Regulation of Circulating Leukocytes in Juvenile Siberian Hamsters: Mediation by Melatonin and Testosterone, J. Biol. Rhythms, 2003, vol. 18, pp. 473–480.PubMedCrossRefGoogle Scholar
  33. 33.
    Proust, J., Rosenzweig, P., Debouzy, C., and Moulias, R., Lymphopenia Induced by Acute Bacterial Infections in the Elderly: A Sign of Age-Related Immune Dysfunction of Major Prognostic Significance, Gerontology, 1985, vol. 31, no. 3, pp. 178–185.PubMedCrossRefGoogle Scholar
  34. 34.
    Rai, S. and Haldar, C., Pineal Control of Immune Status and Hematological Changes in Blood and Bone Marrow of Male Squirrels (Funambulus pennanti) during Their Reproductively Active Phase, Comp. Biochem. Physiol., C, 2003, vol. 136, no. 4, pp. 319–328.Google Scholar
  35. 35.
    Siegrist, C., Benedetti, C., Orlando, A., et al., Lack of Changes in Serum Prolactin, FSH, TSH, and Estradiol after Melatonin Treatment in Doses that Improve Sleep and Reduce Benzodiazepine Consumption in Sleep-Disturbed, Middle-Aged, and Elderly Patients, J. Pineal Res., 2001, vol. 30, pp. 34–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Skene, D.J. and Swaab, D.F., Melatonin Rhythmicity: Effect of Age and Alzheimer’s Disease, Exp. Gerontol., 2003, vol. 38, pp. 199–206.PubMedCrossRefGoogle Scholar
  37. 37.
    Srinivasan, V., Maestroni, G.J., Cardinali, D.P., et al., Melatonin, Immune Function and Aging, Immun. Aging, 2005, vol. 29, pp. 2–17.Google Scholar
  38. 38.
    Tabuchi, T., Shimazaki, J., Satani, T., et al., The Perioperative Granulocyte/Lymphocyte Ratio Is a Clinically Relevant Marker of Surgical Stress in Patients with Colorectal Cancer, Cytokine, 2011, vol. 53, pp. 243–248.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. B. Uzenbaeva
    • 1
  • I. A. Vinogradova
    • 2
  • A. G. Kizhina
    • 1
  • O. A. Prokopenko
    • 2
  • A. I. Malkiel
    • 3
  • A. I. Goranskii
    • 3
  • S. Lapinski
    • 4
  • V. A. Ilyukha
    • 1
    • 2
  1. 1.Institute of Biology of Karelian Research Center of the Russian Academy of SciencesPetrozavodskRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia
  3. 3.Karelian State Pedagogical AcademyPetrozavodskRussia
  4. 4.Agricultural University of KrakowKrakowPoland

Personalised recommendations