Skip to main content

The effects of the relict microorganism B. sp. on development, gas exchange, spontaneous motor activity, stress resistance, and survival of Drosophila melanogaster

Abstract

Relict microorganisms preserved in the permafrost of geological periods possess a unique resistance to unfavorable factors of the internal and external environment. Their metabolic, DNA repair, and growth capacities are still under discussion, but the very fact of their existence in permafrost during many thousands of years is evidence of their phenomenal viability. One of these bacteria (B. sp.) that was found in Yakutia and that proved to be capable of enhancing longevity and immunity in drosophila and mice (A.V. Brushkov et al., 2009) was tested in developing drosophila fruit flies as follows: a culture of B. sp. (1 to 500 million/ml) was added to the nutrient medium of Drosophila melanogaster and a set of indices characterizing growth rate and mortality at the larval and pupal stages was investigated. The level of gas exchange (\(V_{O_2 }\) and \(V_{CO_2 }\)), body weight, and stress resistance were investigated in imagoes hatched under these conditions. B. sp. induces dose-dependent growth acceleration and decrease in larval mortality. The increase in spontaneous motor activity, \(V_{O_2 }\) and \(V_{CO_2 }\), and body weight, as well as resistance to heat shock and UV irradiation, were demonstrated for imagoes.

This is a preview of subscription content, access via your institution.

References

  1. Brushkov, A.V., Mel’nikov, V.P., Sukhovei, Yu.G., et al., Relict Microorganisms of Cryolite Zone as Possible Objects of Gerontology, Uspekhi Gerontol., 2009, vol. 22, pp. 253–258.

    CAS  Google Scholar 

  2. Kalenova, L.F., Sukhovei, Yu.G., Brushkov, A.V., et al., Influence of Permafrost Microorganisms on Quality and Duration of Life of Laboratory Animals, Ros. Fziol. Zhurn., 2010, vol. 96, pp. 89–97.

    CAS  Google Scholar 

  3. Assefa, Z., Van Laethem, A., Garmyn, M., and Agostinis, P., Ultraviolet Radiation-Induced Apoptosis in Keratinocytes: On the Role of Cytosolic Factors, Biochim. Biophys. Acta, 2005, vol. 1755, pp. 90–106.

    PubMed  CAS  Google Scholar 

  4. Ayala-Del-Río, H.L., Chain, P.S., Grzymski, J.J., et al., The Genome Sequence of Psychrobacter arcticus 273–4, a Psychroactive Siberian Permafrost Bacterium, Reveals Mechanisms for Adaptation to Low-Temperature Growth, Appl. Environm. Microbiol., 2010, vol. 76, pp. 2304–2312.

    Article  Google Scholar 

  5. Bakermans, C., Tsapin, A. I., Souza-Egipsy, V., et al., Reproduction and Metabolism at -10 Degrees C of Acteria Solated from Siberian Permafrost, Environm. Microbiol., 2003, vol. 5, pp. 321–326.

    Article  Google Scholar 

  6. Cano, R.J. and Borucki, M.K., Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber, Science, 1995, vol. 268(5213), pp. 1060–1064.

    PubMed  Article  CAS  Google Scholar 

  7. Cano, R.J., Poinar, H.N., Pieniazek, N.J., et al., Amplification and Sequencing of DNA from a 120–135-Million-Year-Old Weevil, Nature, 1993, vol. 363(6429), pp. 536–538.

    PubMed  Article  CAS  Google Scholar 

  8. Costa, R.M.A., Chiganças, V., Galhardo, R., et al., The Eukaryotic Nucleotide Excision Repair Pathway, Biochimie, 2003, vol. 85, pp. 1083–1099.

    PubMed  Article  CAS  Google Scholar 

  9. Fish, S.A., Shepherd, T.J., McGenity, T.J., and Grant, W.D., Recovery of 16S Ribosomal RNA Gene Fragments from Ancient Halite, Nature, 2002, vol. 417, pp. 432–436.

    PubMed  Article  CAS  Google Scholar 

  10. Johnson, S.S., Hebsgaard, M.B., Christensen, T.R., et al., Ancient Bacteria Show Evidence of DNA Repair, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 14401–14405.

    PubMed  Article  CAS  Google Scholar 

  11. Katayama, T., Kato, T., Tanaka, M., et al., Tomitella biformata gen. nov., sp. nov., a Novel Member of the Suborder Corynebacterineae Isolated from a Permafrost Ice Wedge, Int. J. System. Evol. Microbiol., 2010, vol. 60, pp. 2803–2807.

    Article  CAS  Google Scholar 

  12. Katayama, T., Tanaka, M., Moriizumi, J., et al., Phylogenic Analysis of Bacteria Preserved in a Permafrost Ice Wage for 25000 Years, Appl. Environm. Micriobiol., 2007, vol. 73, no. 7, pp. 2360–2363.

    Article  CAS  Google Scholar 

  13. Krivushin, K.V., Shcherbakova, V.A., Petrovskaya, L.E., and Rivkina, E.M., Methanobacterium veterum sp. nov., from Ancient Siberian Permafrost, Int. J. System. Evol. Microbiol., 2010, vol. 60, pp. 455–459.

    Article  CAS  Google Scholar 

  14. Lans, H., Marteijn, J. A., Schumacher, B., et al., Involvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development, PLoS Genet., 2010, vol. 6(5).

  15. Lewis, K., Epstein, S., Godoy, V.G., and Hong, S.H., Intact DNA in Ancient Rermafrost, Trends Microbiol., 2008, vol. 16(3), pp. 92–94.

    PubMed  Article  CAS  Google Scholar 

  16. Lindahl, T., Instability and Decay of the Primary Structure of DNA, Nature, 1993, vol. 362(6422), pp. 709–715.

    PubMed  Article  CAS  Google Scholar 

  17. McKay, C.P., An Origin of Life on Mars, Cold Spr. Harb. Perspect. Biol., 2010, vol. 2(4).

  18. Muñoz, M.J., Longevity and Heat Stress Regulation in Caenorhabditis elegans, Mech. Aging Dev., 2003, vol. 124(1), pp. 43–48.

    PubMed  Article  Google Scholar 

  19. Osborne, M.R. and Phillips, D.H., Preparation of a Methylated DNA Standard, and Its Stability on Storage, Chem. Res. Toxicol., 2000, vol. 13(4), pp. 257–261.

    PubMed  Article  CAS  Google Scholar 

  20. Panieri, G., Lugli, S., Manzi, V., et al., Ribosomal RNA Gene Fragments from Fossilized Cyanobacteria Identified in Primary Gypsum from the Late Miocene, Italy, Geobiology, 2010, vol. 8(2), pp. 101–111.

    PubMed  Article  CAS  Google Scholar 

  21. Poinar, H.N., Höss, M., Bada, J.L., and Pääbo S., Amino Acid Racemization and the Preservation of Ancient DNA, Science, 1996, vol. 272(5263), pp. 864–866.

    PubMed  Article  CAS  Google Scholar 

  22. Price, P.B., Microbial Genesis, Life and Death in Glacial Ice, Canad. J. Microbiol., 2009, vol. 55(1), pp. 1–11.

    Article  CAS  Google Scholar 

  23. Rasmussen, M., Li, Y., Lindgreen, S., et al., Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo, Nature, 2010, vol. 463(7282), pp. 757–762.

    PubMed  Article  CAS  Google Scholar 

  24. Smith, D.J., Schuerger, A.C., Davidson, M.M., et al., Survivability of Psychrobacter cryohalolentis K5 under Simulated Martian Surface Conditions, Astrobiology, 2009, vol. 9(2), pp. 221–228.

    PubMed  Article  CAS  Google Scholar 

  25. Stergiou, L., Doukoumetzidis, K., Sendoel, A., and Hengartner, M.O., The Nucleotide Excision Repair Pathway is Required for UV-C-Induced Apoptosis in Caenorhabditis elegans, Cell Death Differ., 2007, vol. 14(6), pp. 1129–1138.

    PubMed  Article  CAS  Google Scholar 

  26. Steven, B., Pollard, W.H., Greer, C.W., and Whyte, L.G., Microbial Diversity and Activity Through a Permafrost/Ground Ice Core Profile from the Canadian High Arctic, Environm. Microbiol., 2008, vol. 10(12), pp. 3388–3403.

    Article  CAS  Google Scholar 

  27. Vishnivetskaya, T.A. and Kathariou, S., Putative Transposases Conserved in Exiguobacterium Isolates from Ancient Siberian Permafrost and from Contemporary Surface Habitats, Appl. Environm. Microbiol., 2005, vol. 71(11), pp. 6954–6962.

    Article  CAS  Google Scholar 

  28. Vishnivetskaya, T., Kathariou, S., McGrath, J., et al., Low Temperature Recovery Strategies for the Isolation of Bacteria from Ancient Permafrost Sediments, Extremophiles, 2000, vol. 4(3), pp. 165–173.

    PubMed  Article  CAS  Google Scholar 

  29. Vreeland, R.H., Rosenzweig, W.D., and Powers, D.W., Isolation of a 250 Million-Year-Old Halotolerant Bacterium from a Primary Salt Crystal, Nature, 2000, vol. 407(6806), pp. 897–900.

    PubMed  Article  CAS  Google Scholar 

  30. Wang, G.X., Liu, Y.T., Li, F.Y., et al., Immunostimulatory Activities of Bacillus Simplex DR-834 to Carp (Cyprinus carpio), Fish Shellfish Immunol., 2010, vol. 29(3), pp. 378–387.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. K. Muradyan.

Additional information

Original Russian Text © A.V. Brushkov, V.V. Bezrukov, G.I. Griva, Kh.K. Muradyan, 2011, published in Uspekhi Gerontologii, 2011, Vol. 24, No. 2, pp. 198–206.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brushkov, A.V., Bezrukov, V.V., Griva, G.I. et al. The effects of the relict microorganism B. sp. on development, gas exchange, spontaneous motor activity, stress resistance, and survival of Drosophila melanogaster . Adv Gerontol 2, 19–26 (2012). https://doi.org/10.1134/S2079057012010055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057012010055

Keywords

  • relict microorganisms
  • drosophila
  • development
  • survival
  • stress resistance