Advances in Gerontology

, Volume 1, Issue 4, pp 328–339 | Cite as

Mechanism of geroprotective action of delta-sleep inducing peptide

  • T. I. Bondarenko
  • E. A. Maiboroda
  • I. I. Mikhaleva
  • I. A. Prudchenko


Subcutaneous injections of exogenous delta-sleep inducing peptide (DSIP) to rats aged 2–24 months (100 μg/kg body weight, 5-day series of injections) have been shown to efficiently prevent oxidative damage to lipids and malonic dialdehyde accumulation in the tissues and blood plasma of rats of different ages. DSIP has a strong antioxidant effect mediated by the activation of various endogenous mechanisms of antioxidant protection both in cells and in the intercellular liquid containing high molecular weight and low molecular weight regulators of free-radical processes. DSIP has a stimulatory effect on the activity of superoxide dismutase, catalase, and ceruloplasmin, and affects the concentration of nonenzymatic antioxidantsurea and ureic acid; the physiological aging of the organism is accompanied by suppression of antioxidant protection mechanisms. DSIP increases the capacity of endogenous antioxidant protection systems in the tissues and blood, mostly by stimulating the components of the enzymatic antioxidant system, especially in late ontogenesis.


delta-sleep inducing peptide aging antioxidants brain liver blood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arutyunyan, A.V. and Kozina, L.S., Mechanisms of Free Radical Oxidation and Its Role in Aging, Uspekhi Gerontol., 2009, vol. 22, no. 1, pp. 104–116.Google Scholar
  2. 2.
    Voitenkov, V.B., Popovich, I.G., Zabezhinskii, I.A., et al., The Influence of Delta-Sleep Inducing Peptide-Containing Preparation Deltaran on Life Duration, Physiological Parameters and Carcinogenesis in Mice, Uspekhi Gerontol, 2009, vol. 22, no. 4, pp. 646–654.Google Scholar
  3. 3.
    Kamyshnikov, V.S., Spravochnik po kliniko-biokhimicheskim issledovaniyam i laboratornoi diagnostike (Handbook on Clinical-Biochemical Studies and Laboratory Diagnostics), Moscow: MED-Press-In-form, 2004.Google Scholar
  4. 4.
    Korolyuk, M.A., Ivanova, L.I., Mairova, I.G., and Tokarev, V.E., A Method for Determination of Catalase Activity, Lab. Delo, 1988, no. 1, pp. 16–19.Google Scholar
  5. 5.
    Lushchak, V.I., Free Radical Oxidation of Proteins and Its Relation with Functional Status of Organism, Biokhimiya, 2007, vol. 72, no. 8, pp. 995–1017.Google Scholar
  6. 6.
    Men’shchikova, E.B. and Zenkov, N.K., Antioxidants and Inhibitors of Radical Oxidative Processes, Usp. Sovrem. Biol., 1993, vol. 113, no. 4, pp. 442–445.Google Scholar
  7. 7.
    Men’shchikova, E.B., Lankin, V.Z., Zenkov, N.K., et al., Okislitel’nyi stress. Prooksidanty i antioksidanty (Oxidative Stress. Prooxidants and Antioxidants), Moscow: Slovo, 2006.Google Scholar
  8. 8.
    Mikhaleva, I.I. and Voitenkov, B.O., Delta-Sleep Peptide and Deltaran: From Chemical-Biological Studies to Medicine, Novye Lekarstvennye Preparaty, 2007, no. 3, pp. 6–20.Google Scholar
  9. 9.
    Rikhireva, G.T., Bulatova, M.K., Sharygin, V.L., et al., Mechanism of Biological Activity of DSIP Includes Activation of Synthesis of Deoxyribonucleotides, Izv. RAN, 2009, no. 4, pp. 462–467.Google Scholar
  10. 10.
    Rikhireva, G.T., Makletsova, M.G., Mendzheritskii, A.M., et al., Alteration of Intensities of Free Radical Reactions in Rat Organs at Hypokinetic Stress and Protection by Inducing Del’ta-Son Peptide, Izv. RAN, 1993, no. 2, pp. 243–255.Google Scholar
  11. 11.
    Sametskii, E.A., Plasticity of Neuronal Structures Affected by Inducing Piracetam and Del’ta-Son Peptide at Hypothermia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, 1996.Google Scholar
  12. 12.
    Sirota, T.V., New Approach to Investigation of Adrenalin Autooxidation Process and Its Application for Superoxide Dismutase Activity Measurement, Vopr. Med. Khim., 1999, no. 3, pp. 263–272.Google Scholar
  13. 13.
    Stal’naya, I.D. and Gorishvili, T.D., Metod opredeleniya malonovogo dial’degida s pomoshch’yu tiobarbiturovoi kisloty. Sovremennye metody v biokhimii (Method for Determination of Malonic Dialdehyde), Moscow: Meditsina, 1977.Google Scholar
  14. 14.
    Khavinson, V.Kh., Barinov, V.A., Arutyunyan, A.V., and Malinin, V.V., Svobodnoradikal’noe okislenie i starenie (Free Radical Oxidation and Aging), St. Petersburg: Nauka, 2003.Google Scholar
  15. 15.
    Bondarenko, T.I. and Mikhaleva, I.I., The Influence of DSIP upon the Hipophysis-Adrenal Cortex System in Rats under Normal and Cold Stress Conditions, in Delta-Sleep Inducing Peptide, Theoretical and Applied Aspect, Rostov-on-Don, 1991, pp. 17–19.Google Scholar
  16. 16.
    Cutler, R.G., Oxidative Stress: Its Potential Relevance to Human Disease and Longevity Determinants, Age, 1995, vol. 18, pp. 91–96.CrossRefGoogle Scholar
  17. 17.
    Gonga Akbulut, K., Gonu, I.B., and Akbulut, H., Differential Effects of Pharmacological Doses of Melatonin on Malodialdehyde and Glutathione Levels in Young and Old Rats, Gerontologia, 1999, vol. 45, no. 2, pp. 67–71.CrossRefGoogle Scholar
  18. 18.
    Harman, D., Free Radical Theory of Aging: An Update: Increasing the Functional Life Span, Ann. N. Y. Acad. Sci., 2006, vol. 1067, pp. 10–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Mo, J.Q., Hom, D.G., and Andersen, J.K., Decreases in Protective Enzymes Correlates with Increased Oxidative Damage in the Aging Mouse Brain, Mech. Aging Dev., 1995, vol. 81, nos. 2–3, pp. 73–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Musci, G., Bonaccorsi di Patti, C.M., and Fagiolo, U., Age-Related Changes in Human Ceruloplasmin, J. Biol. Chem, 1993, vol. 268, no. 18, pp. 13388–13395.PubMedGoogle Scholar
  21. 21.
    Mush, W., Verfaillie, L., and Decaux, G., Age-Related Increases in Plasma Urea Level and Decreases in Fractional Urea Excretion: Clinical Application in the Syndrome of Inappropriate Secretion of Antidiuretic Hormone, Clin. J. Amer. Soc. Nephrol., 2006, vol. 1, pp. 909–914.CrossRefGoogle Scholar
  22. 22.
    Petterson, S.L. and Stevenson, P.M., Changes in Catalase Activity and Concentration during Ovarian Development and Differentiation, Biochem. Biophis. Acta Mol. Cell Res., 1992, vol. 1135, no. 2, pp. 207–214.CrossRefGoogle Scholar
  23. 23.
    Popovich, I.G., Voitenkov, B.O., Anisimov, V.N., et al., Effect of Delta-Sleep Inducing Peptide-Containing Preparation Deltaran on Biomarkers of Aging, Life Span and Spontaneous Tumor Incidence in Female SHR Mice, Mech. Aging Dev., 2003, vol. 124, no. 6, pp. 721–731.PubMedCrossRefGoogle Scholar
  24. 24.
    Sanguinetti, S.M., Batthyany, C., and Trostchansky, A., Nitric Oxide Inhibits Prooxidant Actions of Uric Acid during Copper-Mediated LDL Oxidation, Arch. Biochem. Biophys., 2004, vol. 423, pp. 302–308.PubMedCrossRefGoogle Scholar
  25. 25.
    Schoenenberger, G.A., Characterization, Properties and Multivariate Function of Delta-Sleep Inducing Peptide (DSIP), Europ. Neurol., 1984, vol. 23, pp. 912–921.Google Scholar
  26. 26.
    Schmucker, D.L., Age-Related Changes in Liver Structure and Function: Implication for Disease? Exp. Geront., 2005, vol. 40, pp. 650–659.CrossRefGoogle Scholar
  27. 27.
    Schriner, S.E., Linford, N.J., and Martin, G.M., Extension of Life Span by Overexpression of Catalase Targeted to Mitochondria, Science, 2005, vol. 308, pp. 1875–1876.CrossRefGoogle Scholar
  28. 28.
    Tanq, T.K., Free Radical Theory of Erythrocyte Aging, J. Formos. Med. Assoc., 1997, vol. 96, no. 10, pp. 779–783.Google Scholar
  29. 29.
    Thomas, M.J., Urate Causes the Human Polymorphonuclear Leucocyte to Secret Superoxide, Free Radic. Boil. Med., 1992, vol. 12, pp. 89–91.CrossRefGoogle Scholar
  30. 30.
    Wong, Y.T., Ruan, R., and Tay, F.E.H., Relationship Between Levels of Oxidative DNA Damage, Lipid Peroxidation and Mitochondrial Membrane Potential in Young and Old F344 Rats, Free Radic. Res., 2006, vol. 40, pp. 393–402.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • T. I. Bondarenko
    • 1
  • E. A. Maiboroda
    • 1
  • I. I. Mikhaleva
    • 2
  • I. A. Prudchenko
    • 2
  1. 1.South Federal UniversityRostov-on-DonRussia
  2. 2.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations