Advances in Gerontology

, Volume 1, Issue 1, pp 28–38 | Cite as

Neuroimmunoendocrine mechanisms of aging

  • M. A. Paltsev
  • I. M. Kvetnoy
  • V. O. Polyakova
  • T. V. Kvetnaiya
  • A. V. Trofimov


This review details the mechanisms of aging from the position of common signaling molecules produced in three regulatory systems: nervous, endocrine, and immune. It shows that the neuroendocrine hormonal regulation of homeostasis plays an important role in the complex chain of processes that lead to aging of cells, tissues, organs, and the body as a whole. Particular attention is given to morphofunctional involution of nervous, endocrine, and immune systems, accompanied by a breach of elaborate signaling molecules. Detailed analysis and further development of integrated molecular commonality of views on the regulatory systems of both the central and especially local levels, opens vast new opportunities for deepening knowledge of the mechanisms of aging, as well as for the prevention, diagnosis, and treatment of diseases associated with aging in which pathogenesis, the discoordination of neuroimmunoendocrine signaling mechanisms plays an important role.


neuroimmunoendocrinology aging signaling molecules hormones age-associated diseases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anisimov, V.N. and Solov’ev, M.V., Evolyutsiya kontsesptsii v gerontologii (Evolution of Concepts in Gerontology), St. Petersburg: Eskulap, 1999.Google Scholar
  2. 2.
    Vvedenie v molekulyarnuyu meditsinu (Introduction to Molecular Medicine), Paltsev, M.A., Ed., Moscow: Medicine, 2004.Google Scholar
  3. 3.
    Kvetnoy, I.M. and Ingel’, I.E., Hormonal Function of Nonendocrine Cells: The Role of New Biological Phenomenon in the Regulation of Homeostasis, Byul. Eksp. Biol., 2000, vol. 130, no. 11, pp. 483–487.Google Scholar
  4. 4.
    Kvetnoy, I.N., Yarilin, A.A., and Polyakova, V.O., Neiroimmunoendokrinologiya gomeostaza (Neuroimmunoendocrinology of Homeostasis), St.-Petersburg.: Dean, 2005.Google Scholar
  5. 5.
    Kvetnoy, I.M., Raikhlin, N.T., Yuzhakov, V.V., and Ingel, I.E., Extrapineal Melatonin: Place and Role in the Neuroendocrine Regulation of Homeostasis, Byul. Eksp. Biol., 1999, vol. 127, no. 4, pp. 364–370.Google Scholar
  6. 6.
    Khavinson, V. Kh., Kvetnoy, I.M., and Yuzhakov, V.V., Peptidergicheskaya regulyatsiya gomeostaza (Peptidergic Regulation of Homeostasis), St. Petersburg: Nauka, 2003.Google Scholar
  7. 7.
    Yarilin, A.A., Cytokines in Thymus. Production and Reception of Cytokines, Tsitokiny Vosp., 2003, vol. 2, no. 1, pp. 3–13.Google Scholar
  8. 8.
    Ahima, R.S., Adipose Tissue as an Endocrine Organ, Obesity, 2006, Suppl. 5, pp. 242–249.Google Scholar
  9. 9.
    Ahima, R.S., Osei, S. Y., Adipokines in Obesity, Front. Horm. Res., 2008, vol. 36, pp. 182–197.CrossRefPubMedGoogle Scholar
  10. 10.
    Atkinson, T.J., Central and Peripheral Neuroendocrine Peptides and Signaling in Appetite Regulation: Consideration for Obesity Pharmacotherapy, Obes. Rev., 2008, vol. 9, no 2, pp. 108–120.CrossRefPubMedGoogle Scholar
  11. 11.
    Neuroimmunoendocrinology. Chemical Immunology, 3rd revisited and enlarged edition, Blalock, J.E., Ed., Basel-Karger, 1997.Google Scholar
  12. 12.
    Blum, J.W. and Baumrucker, C.R., Insulin-like Growth Factors (IGFs), IGF Binding Proteins, and Other Endocrine Factors in Milk: Role in Newborn, Adv. Exp. Med. Biol., 2008, vol. 606, pp. 397–422.CrossRefPubMedGoogle Scholar
  13. 13.
    Chapman, C.R., Tuckett, R.P., and Song C.W., Pain and Stress in a System Perspective: Reciprocal Neural, Endocrine, and Immune Interactions, J. Pain., 2008, vol. 9, no. 2, pp. 122–145.CrossRefPubMedGoogle Scholar
  14. 14.
    Correa, S.G., Maccioni, M., Rivero, V.E., et al., Cytokines and the Immune-Neuroendocrine Network: What Did We Learn from Infection and Autoimmunity? Cytokine Growth Factor Rev., 2007, vol. 30, pp. 2325–2329.Google Scholar
  15. 15.
    Gallowitsch-Puerta, M. and Pavlov, V.A., Neuro-Immune Interactions via the Cholinergic Anti-Inflammatory Pathway, Life Sci., 2007, vol. 18, nos. 1–2, pp. 125–134.Google Scholar
  16. 16.
    Hall, J.E., Neuroendocrine Changes with Reproductive Aging in Women, Semin. Reprod. Med., 2007, vol. 25, no. 5, pp. 344–351.CrossRefPubMedGoogle Scholar
  17. 17.
    Jensen, R.T., Battey, J.F., Spindel, E.R., and Benya, R.V., International Union of Pharmacology. LXVIII Mammalian Bombesin Receptors: Nomenclature, Distribution, Pharmacology, Signaling and Functions in Normal and Disease States, Pharmacol. Rev., 2008, vol. 60, no. 1, pp. 1–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Kvetnoy, I., Popuichiev, V., Mikhina, L., et al., Gut Neuroendocrine Cells: Relationship to the Proliferative Activity and Apoptosis of Mucous Epitheliocytes in Aging, Neuroendocr. Lett., 2001, vol. 22, no. 5, pp. 337–341.Google Scholar
  19. 19.
    Kventoy, I.M., Ingel, I.E., Kvetnaia, T.V., et al., Gastrointestinal Melatonin: Cellular Identification and Biological Role, Neuroendocr. Lett., 2002, vol. 23, no. 2, pp. 121–132.Google Scholar
  20. 20.
    Kvetnoy, I.M., Polyakova, V.O., Trofimov, A.V., et al., Hormonal Function and Proliferative Activity of Thymic Cells in Humans: Immunocytochemical Correlations, Neuroendocr. Lett., 2003, vol. 24, nos. 3–4, pp. 263–258.Google Scholar
  21. 21.
    Lam, I.P, Siu, F.K., Chu, J.Y., and Chow, B.K., Multiple Actions of Secretin in the Human Body, Int. Rev. Cytol., 2008, vol. 265, pp. 159–190.CrossRefPubMedGoogle Scholar
  22. 22.
    Markus, R.P., Ferreira, Z.S., Fernandes, P.A., and Cecon, E., The Immune-Pineal Axis: A Shuttle between Endocrine and Paracrine Melatonin Sources, Neuroimmunomodulation, 2007, vol. 14, nos. 3–4, pp. 126–133.CrossRefPubMedGoogle Scholar
  23. 23.
    Minici, F., Tiberi, F., Tropea, A., et al., Paracrine Regulation of Endometriotic Tissue, Gynecol. Endocrinol., 2007, vol. 23, no. 10, pp. 574–580.CrossRefPubMedGoogle Scholar
  24. 24.
    Pearse, A.G.E., The Cytochemistry and Ultrastructure of Polypeptide Hormone-Producing Cells of the APUD Series and the Embryologic, Physiologic and Pathologic Implications of the Concept, J. Histochem. Cytochem., 1969, vol. 17, pp. 303–313.PubMedGoogle Scholar
  25. 25.
    Pearse, A.G.E., The Diffuse Endocrine System and the Implications of the APUD Concept, Int. Surg., 1979, vol. 64, no. 2, pp. 5–7.PubMedGoogle Scholar
  26. 26.
    Polak, J.M. and Bloom, S.R., Immunocytochemistry of the Diffuse Neuroendocrine System, in Immunocytochemistry: Modern Methods and Applications, Polak, J.M. and Van Noorden, S., Eds., Bristol: John Wright, 1986, pp. 328–348.Google Scholar
  27. 27.
    Salzet, M. and Tasiemski, A., Involvement of Pro-Enkephalin-Derived Peptides in Immunity, Dev. Comp. Immunol., 2001, vol. 25, no. 3, pp. 177–185.CrossRefPubMedGoogle Scholar
  28. 28.
    Savino, W., Neuroendocrine Control of T Cell Development in Mammals: Role of Growth of Hormone in Modulating Thymocyte Migration, Exp. Physiol., 2007, vol. 92, no. 5, pp. 13–17.CrossRefGoogle Scholar
  29. 29.
    Wrona, D., Neural-Immune Interactions: An Integrative View of the Bidirectional Relationship between the Brain and Immune System, J. Neuroimmunol., 2006, vol. 172, nos. 1–2, pp. 38–58.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. A. Paltsev
    • 1
  • I. M. Kvetnoy
    • 2
  • V. O. Polyakova
    • 2
  • T. V. Kvetnaiya
    • 3
  • A. V. Trofimov
    • 3
  1. 1.Sechenov Moscow Medical AcademyMoscowRussia
  2. 2.Ott Institute of Obstetrics and GynecologyRussian Academy of Medical SciencesSt. PetersburgRussia
  3. 3.St. Petersburg Institute of Bioregulation and GerontologyNorthwest Branch Russian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations