The Role of Binding Phase in Hard Alloys (Analytical Review)

Abstract

A review of articles on the influence of the composition and structure of the binding phase on the properties of hard alloys is given. The role of the binding phase influencing the properties of hard alloys on the basis of data of domestic and foreign researchers is emphasized. The existing and new data on testing of the elements of periodic system as a binding phase which impacts the microstructure and properties of a hard alloy are presented. The existing and new proposals on replacing of the main element (cobalt) with iron, nickel, rhenium, molybdenum, chromium, etc., are considered in order to obtain higher properties and lower the price of the alloy. It is shown that obtaining the best operational properties in each particular case of application of the alloy requires an optimal combination of grain size and cobalt content. Various hard-alloy products are indicated for different areas of application. Techniques of reinforcement of the binding of hard alloys by means of introduction of various types of reinforcers are considered. Their influence on average grain size and properties of hard alloy is shown by examples of various grain growth inhibitors. The ways of further development of submicron, ultrathin, and nanophase alloys with a nanostructured binder reinforced with nanoparticles are presented. The way of further development of hard alloys is shown by example of alloy WC–50% Со with additions. The properties of replacing the cobalt binder with nickel alloyed with small additives are indicated: Мо, W, TiC, HfC, VC, NbC, TaC, Cr3C2.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Tret’yakov, V.I., Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov (Fundamentals of Metal Science and Production Technology of Sintered Solid Alloys), Moscow: Metallurgiya, 1976.

  2. 2

    Panov, V.S., Chuvilin, A.M., and Fal’kovskii, V.A., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh (Technology and Properties of Sintered Solid Alloys and Their Products), Moscow: Mosk. Inst. Stali Splavov, 2004.

  3. 3

    Konyashin, I., Cemented carbides for mining, construction and wear parts, in Comprehensive Hard Materials, Sarin, V., Ed., Amsterdam: Elsevier, 2014, vol. 1, chap. 1.15, pp. 425–451.

    Google Scholar 

  4. 4

    Konyashin, I. and Klyacjko, L., History of cemented carbides in the Soviet Union, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, pp. 9–26.

    CAS  Article  Google Scholar 

  5. 5

    Exner, H. and Gurland, J., A review of parameters influencing some mechanical properties of tugsten carbide-cobalt alloy, Powder Metall., 1970, vol. 13, pp. 13–31.

    CAS  Article  Google Scholar 

  6. 6

    Konyashin, I., Zaitsev, A.A., et al., Wettability of tungsten carbide by liquid binders in WC–Co cemented carbides: Is it complete for all carbon contents? Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 134–148.

    CAS  Article  Google Scholar 

  7. 7

    Fal’kovskii, V.A., Innovatsii v tekhnologii tverdykh splavov: nano-i ul’tradispersnye struktury (Innovations in Technology of Solid Alloys: Nano-and Ultradispersed Structures), Moscow: Mosk. Gos. Univ. Tonkikh Khim. Tekhnol., 2008.

  8. 8

    Kreimer, G.S., Prochnost’ tverdykh splavov (Strength of Hard Alloys), Moscow: Metallurgiya, 1971.

  9. 9

    Gurland, J. and Norton, J.T., Role of the binder phase in cemented tungsten carbide-cobalt alloys, JOM, 1952, vol. 4, pp. 1051–1056.

    CAS  Article  Google Scholar 

  10. 10

    Bogodukhov, S.I., Kozak, E.S., and Svidenko, E.V., Hardening of hard alloys (overview), Uprochnyayushchie Tekhnol. Pokrytiya, 2015, no. 11, pp. 3–11.

  11. 11

    Ostberg, G., Buss, K., Christensen, M., et al., Effect of TaC on plastic deformation of WC–Co and Ti(C, N)–WC–Co, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 145–154.

    Article  Google Scholar 

  12. 12

    Brookes, A.K., Fine and ultrafine hardmetals at Plansee 2001, Met. Powder Rep., 2001, vol. 56, no. 11, pp. 24–27.

    Google Scholar 

  13. 13

    Konyashin, I., Ries, B., and Lachmann, F., Novel hardmetal with nano-strengthened binder, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 1, pp. 19–21.

    Article  Google Scholar 

  14. 14

    Konyashin, I. and Ries, B., Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part I: ASTM wear tests, Int. J. Refract. Met. Hard Mater., 2014, vol. 46, pp. 12–19.

    CAS  Article  Google Scholar 

  15. 15

    Suzuki, H., Hayashi, K., and Taniguchi, Y., The β-free layer near the surface of vacuum-sintered tungsten carbide-beta-Co alloys containing nitrogen, Trans. Jpn. Inst. Met., 1981, vol. 22, no. 11, pp. 758–764.

    CAS  Article  Google Scholar 

  16. 16

    Konyashin, I., Senchihin, V., Anikeev, A., and Glushkov, V., Development, production and application of novel grades of coated hard metals in Russia, Int. J. Refract. Met. Hard Mater., 1996, vol. 14, pp. 41–48.

    CAS  Article  Google Scholar 

  17. 17

    Agureev, L.E., Ivanov, B.S., Ivanov, A.V., Barmin, A.A., and Rudshtein, R.I., The properties of a nanocomposite based on a ceramic matrix reinforced with carbon nanotubes, Nanotekhnol.: Nauka Proizvod., 2017, no. 1, pp. 13–24.

  18. 18

    Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanomaterials), Moscow: Akademiya, 2005.

  19. 19

    Konyashin, I., Ries, B., Lachmann, F., Cooper, R., Mazilkin, A., Straumal, B., and Aretz, A., Hardmetals with nano-grain reinforced binder: binder fine structure and hardness, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 583–588.

    CAS  Article  Google Scholar 

  20. 20

    Shao, G., Duan, X.-L., Xie, J., Yu, X., Zhang, W., and Yuan, R., Sintering of nanocrystalline WC–Co composite powder, Rev. Adv. Mater. Sci., 2003, vol. 5, pp. 281–286.

    CAS  Google Scholar 

  21. 21

    Hayashi, K., Fuke, Y., and Suzuki, H., Effects of addition carbides on the grain size of WC–Co alloy, J. Jpn. Soc. Powder Powder Metall., 1972, vol. 19, no. 2, pp. 67–71.

    Article  Google Scholar 

  22. 22

    Konyashin, I., Ries, B., and Roebuck, B., WC–Co–Re cemented carbides: state of the art, Proc. 2018 World Conf. on Powder Metallurgy (World PM2018), Beijing, China, September 16–20, 2018, Beijing: Chin. Soc. Met., China Powder Metall. Alliance, 2018.

  23. 23

    Farag, S., Konyashin, I., and Ries, B., The influence of grain growth inhibition on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals—A review, Int. J. Refract. Met. Hard Mater., 2018, vol. 77, pp. 12–30.

    CAS  Article  Google Scholar 

  24. 24

    Fal’kovskii, V.A. and Klyachko, L.I., Tverdye splavy (Solid Alloys), Moscow: Ruda i Metally, 2005.

  25. 25

    Warbichel, P., Hoferm, F., Grogger, W., and Lackner, A., EFTEM-EELS characterization of VC and Cr3C2 doped cemented carbides. Proc. 15th Int. Plansee Seminar 2001, Kneringer, G., Rödhammer, P., and Wildner, H., Eds., Reutte: Plansee Group, 2001, vol. 2, pp. 65–74.

  26. 26

    Ivensen, V.A., Gol’dberg, Z.A., Eiduk, O.I., et al., The breaking strength of a hard alloy under impact loads, Sov. Powder Metall. Met. Ceram., 1965, vol. 4, no. 12, pp. 1015–1017.

    Article  Google Scholar 

  27. 27

    Novikov, N.V. and Bondarenko, V.P., Strukturirovannye materially—novoe napravlenie v materialovedenii kompozitov (Structured Materials: A New Trend in Composite Materials Science), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2010, no. 8, pp. 81–86.

  28. 28

    Bondarenko, V.P., Novikov, N.V., and Gnatenko, I.A., Possible control of the state of intercarbide boundaries in WC–Co hard alloys, in Porodorazrushayushchii i metalloobrabatyvayushchii instrument (Mineral Destructive and Metalworking Tools), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2010, no. 13, pp. 381–382.

  29. 29

    Panov, V.S., Occurrence and ways of development of manufacture of domestic hard alloy products, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 4, pp. 693–698.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Panov.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panov, V.S. The Role of Binding Phase in Hard Alloys (Analytical Review). Inorg. Mater. Appl. Res. 12, 30–33 (2021). https://doi.org/10.1134/S2075113321010317

Download citation

Keywords:

  • hard alloy
  • powder metallurgy
  • metals of iron group
  • grades of alloys
  • structure
  • properties
  • technology
  • binding
  • products