Characteristics of the Parameters of Superfine Fibers of Poly(3-hydroxybutyrate) Modified with Tetraphenylporphyrin

Abstract

Structural-dynamic studies combining X-ray diffraction analysis, thermophysical measurements (DSC), X-ray diffraction analysis, probe EPR method, and scanning electron microscopy are performed. The structural and dynamic characteristics of electrospun superfine fibers based on poly-(3-hydroxybutyrate) (PHB) containing a low concentration of the tetraphenylporphyrin complex (TPP) (0–5%) are considered. It is shown that the addition of tetramethylporphyrin complexes to PHB fibers changes the morphology, a slight decrease in crystallinity is observed, and the molecular mobility in the amorphous regions of the polymer slows down. The temperature action on the fibers (annealing at 140°C) leads to a sharp increase in crystallinity and molecular mobility in the amorphous regions of poly(3-hydroxybutyrate)—TPP fibers. Exposure to an aqueous medium at 70°C is accompanied by a sharp decrease in the enthalpy of melting and an increase in the molecular mobility of chains in the amorphous regions of the fiber.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Lendlein, Al., Jiang, H., Jünger, O., and Langer, R., Light-induced shape-memory polymers, Nature, 2005, vol. 434, pp. 879–882. https://doi.org/10.1038/nature03496

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Uflyand, I.E. and Dzhardimalieva, G.I., Molecular design of supramolecular polymers with chelated units and their application as functional materials, J. Coord. Chem., 2018, vol. 71, no. 9, pp. 1272–1356.

    CAS  Article  Google Scholar 

  3. 3

    Qian, W., Song, Y., Shi, D., Dong, W., Wang, X., and Zhang, H., Photothermal-triggered shape memory polymer prepared by cross-linking porphyrin-loaded micellar particles, Materials, 2019, vol. 12, pp. 496–508. https://doi.org/10.3390/ma12030496

    CAS  Article  PubMed Central  Google Scholar 

  4. 4

    Biesaga, M., Pyrzyńska, K., and Trojanowicz, M., Porphyrins in analytical chemistry. A review, Talanta, 2000, vol. 51, no. 2, pp. 209–224. https://doi.org/10.1016/S0039-9140(99)00291-X

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Mahmood, A., Hu, J.-Y., Xiao, B., Tang, A., Wang, X.A., and Zhou, E., Recent progress in porphyrin based materials for organic solar cells, J. Mater. Chem. A, 2018, vol. 35, pp. 16769–16797. https://doi.org/10.1039/c8ta06392c

    CAS  Article  Google Scholar 

  6. 6

    Xie, G., Wang, Y., Han, X., Gong, Y., Wang, J., et al., Roles of soft segment length in structure and property of soy protein isolate/waterborne polyurethane blend films, Ind. Eng. Chem. Res., 2016, vol. 55, no. 5, pp. 1229–1235.

    CAS  Article  Google Scholar 

  7. 7

    Kong, L. and Ziegler, G.R., Role of molecular entanglements in starch fiber formation by electrospinning, Biomacromolecules, 2012, vol. 13, pp. 2247–2253.

    CAS  Article  Google Scholar 

  8. 8

    Kulkarni, A., Bambole, V.A., and Mahanwar, P.A., Electrospinning of polymers, their modeling and applications, Polym.-Plast. Technol. Eng., 2010, vol. 49, no. 5, pp. 427–441. https://doi.org/10.1080/03602550903414019

    CAS  Article  Google Scholar 

  9. 9

    Treger, Yu.A., Morozov, K.A., Dasayeva, G.S., and Frolkova, A.K., Chloroprene rubber: application and production, Fine Chem. Technol., 2018, vol. 13, no. 4, pp. 26–39.

    CAS  Article  Google Scholar 

  10. 10

    Wang, Y., Pan, J., Han, X., Sinka, C., and Ding, L., A phenomenological model for the degradation of biodegradable polymers, Biomaterials, 2008, vol. 29, no. 3, pp. 393–401. https://doi.org/10.1016/j.biomaterials.2008.04.042

    CAS  Article  Google Scholar 

  11. 11

    Mergaert, J., Webb, A., Anderson, C., Wouters, A., and Swings, J., Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in soils, Appl. Environ. Microbiol., 1993, vol. 59, no. 10, pp. 3233–3238.

    CAS  Article  Google Scholar 

  12. 12

    Karpova, S.G., Ol’khov, A.A., Iordanskii, A.L., Lomakin, S.M., Shilkina, N.S., and Popov, A.A., Structural dynamic properties of nonwoven composite mixtures based on ultrafine tissues of poly(3-hydroxybutyrate) with chitosan, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 4, pp. 687–698.

    CAS  Article  Google Scholar 

  13. 13

    Karpova, S.G., Ol’khov, A.A., Shilkina, N.S., et al., Influence of drug on the structure and segmental mobility of poly(3-hydroxybutyrate) ultrafine fibers, Polym. Sci., Ser. A, 2017, vol. 59, no. 1, pp. 58–66.

    CAS  Article  Google Scholar 

  14. 14

    Iordanskii, A.L., Ol’khov, A.A., Karpova, S.G., Kucherenko, E.L., Kosenko, R.Yu., Rogovina, S.Z., Chalykh, A.E., and Berlin, A.A., Influence of the structure and morphology of ultrathin poly(3-hydroxybuty-rate) fibers on the diffusion kinetics and transport of drugs, Polym. Sci., Ser. A, 2017, vol. 59, no. 3, pp. 343–353.

    Article  Google Scholar 

  15. 15

    Karpova, S.G., Olkhov, A.A., Bakirov, A.V., Chvalun, S.N., Shilkina, N.G., and Popov, A.A., Poly(3-hydroxybutyrate) matrices modified with iron(III) complexes with tetraphenylporphyrin. Analysis of the structural dynamic parameters, Russ. J. Phys. Chem. B, 2018, vol. 12, no. 1, pp. 142–154.

    CAS  Article  Google Scholar 

  16. 16

    Karpova, S.G., Ol’khov, A.A., Krivandin, A.V., Shatalova, O.V., Lobanov, A.V., Popov, A.A., and Iordanskii, A.L., Effect of zinc–porphyrin complex on the structure and properties of poly(3-hydroxybutyrate) ultrathin fibers, Polym. Sci., Ser. A, 2019, vol. 61, no. 1, pp. 70–84.

    CAS  Article  Google Scholar 

  17. 17

    Tran, C.D., Duri, S., and Harkins, A.L., Recyclable synthesis, characterization, and antimicrobial activity of chitosan-based polysaccharide composite materials, J. Biomed. Mater. Res., Part A, 2013, vol. 101, no. 8, pp. 2248–2257. https://doi.org/10.1002/jbm.a.34520

    CAS  Article  Google Scholar 

  18. 18

    Filatov, Yu.N., Elektroformovanie voloknistykh materialov (EFV-protsess) (Electroforming of Fibrous Materials (ES-Process)), Moscow: Neft’ i Gaz, 1997.

  19. 19

    Krivandin, A.V., Kotova, S.L., Solov’eva, A.B., Shatalova, O.V., and Glagolev, N.N., X-ray analysis of perfluorinated sulfonic-cationite membranes with immobilized tetraphenylporphyrin, Membrany, 2003, no. 3 (19), pp. 32–37.

  20. 20

    Krivandin, A.V., Fatkullina, L.D., Shatalova, O.V., Goloshchapov, A.N., and Burlakova, E.B., Small-angle X-ray scattering study of the incorporation of ICHPHAN antioxidant in liposomes, Russ. J. Phys. Chem. B, 2013, vol. 7, no. 3, pp. 338–342.

    CAS  Article  Google Scholar 

  21. 21

    Budil, D.E., Lee, S., Saxena, S., and Freed, J.H., Nonlinear-least-squares analysis of slow-motion EPR-spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm, J. Magn. Reson., A, 1996, vol. 120, pp. 155–189.

    CAS  Article  Google Scholar 

  22. 22

    Timofeev, V.P., Tkachev, Yu.V., and Misharin, A.Ya., Simulation of EPR spectra of the radical TEMPO in water–lipid systems in different microwave ranges, Biophysics (Moscow), 2011, vol. 56, no. 3, pp. 407–417. https://doi.org/10.1134/S0006350911030274

    Article  Google Scholar 

  23. 23

    Vasserman, A.M. and Kovarskii, A.L., Spinovye metki i zondy v fiziko-khimii polimerov (Spin Labels and Probes in the Physicochemistry of Polymers), Moscow: Nauka, 1986.

  24. 24

    Stephen, Z.D., Handbook of Thermal Analysis and Calorimetry: Applications to Polymers and Plastics, Amsterdam: Elsevier, 2002, vol. 3.

    Google Scholar 

  25. 25

    Opfermann, J., Rechentechnik Datenverarbeitung, 1985, vol. 23, no. 3, pp. 26–27.

    Google Scholar 

  26. 26

    Olkhov, A.A., Krutikova, A.A., Goldshtrakh, M.A., Orlov, N.A., Ischenko, A.A., Staroverova, O.V., and Iordanskii, A.L., New fibrous materials based on poly-3-hydroxybutyrate for biomedical purposes, made via electrospinning technique, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 100–107.

    Article  Google Scholar 

  27. 27

    Ozerin, A.N., Cand. Sci. (Chem.) Dissertation, Moscow: Karpov Sci. Res. Inst. Phys. Chem., 1977.

  28. 28

    Tertyshnaya, Yu.V. and Shibryaeva, L.S., Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water, Polym. Sci. B, 2013, vol. 55, nos. 3–4, pp. 164–168.

  29. 29

    Olkhov, A.A., Kosenko, R. Yu., Goldshtrakh, M.A., Markin, V.S., Ischenko, A.A., and Iordanskii, A.L., Diffusive transport of drugs from film matrices, Theor. Found. Chem. Eng., 2015, vol. 49, no. 6, pp. 847–853.

    CAS  Article  Google Scholar 

  30. 30

    Iordanskii, A.L., Karpova, S.G., Olkhov, A.A., Borovikov, P., Kildeeva, N., and Liu, Y., Structure-morphology impact upon segmental dynamics and diffusion in the biodegradable ultrafine fibers of polyhydroxybutyrate-polylactide blends, Eur. Polym. J., 2019, vol. 117, pp. 208–216. https://doi.org/10.1016/j.eurpolymj.2019.05.012

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, crystallinity measurements were carried out by DSC on a DSC204 F1 device from Netzsch, Germany (Common Use Center New Materials and Technologies of the Institute of Biochemical Physics of the Russian Academy of Sciences).

We express our deep gratitude to A.V. Krivandin and O.N. Shatalova for the provided results of the X-ray diffraction study.

Funding

The work was performed within the Fundamental Program of Scientific Researches RAS АААА-17‑117040610309‑0.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. G. Karpova.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karpova, S.G., Olkhov, A.A., Popov, A.A. et al. Characteristics of the Parameters of Superfine Fibers of Poly(3-hydroxybutyrate) Modified with Tetraphenylporphyrin. Inorg. Mater. Appl. Res. 12, 44–54 (2021). https://doi.org/10.1134/S2075113321010184

Download citation

Keywords:

  • stable radical TEMPO
  • correlation times
  • superfine fibers
  • poly(3-hydroxybutyrate)
  • EPR method
  • two-component amorphous phase