Investigation of Microstructural Features, Phase Composition, and Magnetic Characteristics of YBCO-Based Composites and Additives of CuO Non-Superconducting Component Prepared in Low-Pressure Arc Discharge Plasma

Abstract

A method making it possible to form HTS ceramics of non-superconducting coating consisting of self-organizing CuO crystals, whose sizes are less than the coherence length, i.e., within several tens of nanometers, has been developed. It has been shown that the combination of self-organizing structures in the form of whiskers and nanoparticles which arise as a result of combined sintering of YBa2Cu3O(7–x) powders and electric arc CuO nanopowders results in a significant increase in the current density and appearance of peak effect at high magnetic fields. Very high current density arises from the complex vortex pinning, where whisker defects provide high pinning energy and nanoparticles suppress flux creep. The morphology of such structures can be controlled by a simple change in the concentration of nanodisperse additives. It has been shown that 20 wt % of CuO additive is optimal.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Podlivaev, A.I., Pokrovskii, S.V., Anischenko, I.V., and Rudnev, I.A., Precise magnetometric diagnostics of critical-current inhomogeneities in high-temperature semiconductor tapes, Tech. Phys. Lett., 2017, vol. 43, no. 12, pp. 1136–1139.

    CAS  Article  Google Scholar 

  2. 2

    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I., Fedorov, L.Yu., Gokhfel’d, D.M., Zharkov, S.M., Zeer, G.M., Demin, V.G., and Abkaryan, A.K., The influence of CuO dopant nanoparticles, prepared via the arc plasma synthesis method, on the critical current of YBa2Cu3O7–σ composites, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 4, pp. 999–1002. https://doi.org/10.1134/S2075113319040439

    Article  Google Scholar 

  3. 3

    Ushakov, A.V., Karpov, I.V., Fedorov, L.Yu., Dorozhkina, E.A., Karpova, O.N., Shaikhadinov, A.A., Demin, V.G., Demchenko, A.I., Brungardt, M.V., and Goncharova, E.A., Formation of CuO and Cu2O crystalline phases in a reactor for low-pressure arc discharge synthesis, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 1, pp. 232–237. https://doi.org/10.1134/S2075113320010372

    Article  Google Scholar 

  4. 4

    MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., and Peterson, D.E., Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x + BaZrO3, Nat. Mater., 2004, vol. 3, no. 4, pp. 439–443.

    CAS  Article  Google Scholar 

  5. 5

    Llordés, A., Palau, A., Gázquez, J., Coll, M., Vlad R., Pomar, A., Arbiol, J., Guzmán, R., Ye, S., Rouco, V., Sandiumenge, F., Ricart, S., Puig, T., Varela, M., Chateigner D., et al., Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors, Nat. Mater., 2012, vol. 11, no. 4, pp. 329–336.

    Article  Google Scholar 

  6. 6

    Holesinger, T.G., Civale, L., Maiorov, B., Feldmann, D.M., Coulter, J.Y., Miller, D.J., Maroni, V.A., Chen, Z., Larbalestier, D.C., Feenstra, R., Li, X., Huang, Y., Kodenkandath, T., Zhang, W., Rupich, M.W., et al., Progress in nanoengineered microstructures for tunable high-current, high-temperature superconducting wires, Adv. Mater. Prog. Rep., 2008, vol. 20, pp. 391–407.

    CAS  Article  Google Scholar 

  7. 7

    Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Foltyn, S.R., and Civale, L., Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3–doped YBa2Cu3O7, Nat. Mater., 2009, vol. 8, pp. 398–404.

    CAS  Article  Google Scholar 

  8. 8

    Karpov, I.V., Ushakov, A.V., Lepeshev, A.A., Fedo-rov, L.Yu., Dorozhkina, E.A., Karpova, O.N., Shaikhadinov, A.A., and Demin, V.G., Device for increasing the magnetic flux pinning in granular nanocomposites based on the high-temperature superconducting ceramic, Tech. Phys., 2018, vol. 63, no. 2, pp. 230–234. https://doi.org/10.1134/S1063784218020196

    CAS  Article  Google Scholar 

  9. 9

    Miura, S., Ichino, Y., Yoshida, Y., Ichinose, A., and Tsuruta, A., Vortex pinning properties at grain boundary in SmBa2Cu3Oy superconducting films with BaHfO3 nanorods controlled via low-temperature growth, IEEE Trans. Appl. Supercond., 2017, vol. 27, no. 4, p. 7781616.

    Article  Google Scholar 

  10. 10

    Gasumyants, V.E. and Martynova, O.A., Experimental investigation and quantitative analysis of the normal-state Nernst coefficient in doped high-temperature superconductors of the YBa2Cu3Oy system, in High-Temperature Superconductors: Occurrence, Synthesis and Applications, Miryala, M. and Koblischka, M.R., Eds., New York: Nova Science, 2018, chap. 5, pp. 92–152.

    Google Scholar 

  11. 11

    Salafranca, J., Rincon, J., Tornos, J., Leon, C., Santamaria, J., Dagotto, E., Pennycook, S.J., and Varela, M., Competition between covalent bonding and charge transfer at complex-oxide interfaces, Phys. Rev. Lett., 2014, vol. 112, no. 19, p. 196802.

    Article  Google Scholar 

  12. 12

    Patala, S. and Schuh, C.A., Symmetries in the representation of grain boundary-plane distributions, Philos. Mag., 2013, vol. 93, no. 5, pp. 524–573.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-19-10054).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Ushakov, A.V., Lepeshev, A.A. et al. Investigation of Microstructural Features, Phase Composition, and Magnetic Characteristics of YBCO-Based Composites and Additives of CuO Non-Superconducting Component Prepared in Low-Pressure Arc Discharge Plasma. Inorg. Mater. Appl. Res. 12, 142–146 (2021). https://doi.org/10.1134/S2075113321010172

Download citation

Keywords:

  • low-pressure arc discharge plasma
  • CuO nanopowder
  • pinning centers
  • high-temperature superconductor