The Creation and Application Outlook of Calcium Phosphate and Magnesium Phosphate Bone Cements with Antimicrobial Properties (Review)

Abstract

An overview of the results in the field of creating bone cements based on calcium and magnesium phosphates with antimicrobial properties intended to replace bone tissue defects is presented. It was noted that the modification of cements based on calcium phosphates with magnesium made it possible to provide high strength, optimal setting time, absence of cytotoxicity, and increased matrix properties of the surface. The problems associated with the use of antibiotics in cement-based systems for their targeted prolonged delivery as bactericidal agents are discussed. Alternative approaches based on the doping of cements with elements exhibiting antimicrobial activity, which makes it possible to avoid the emergence of bactericidal agents, are considered.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Barinov, S.M. and Komlev, V.S., Calcium-phosphate bone cements (a review), Part 1. Astringent systems, Materialovedenie, 2014, no. 1, pp. 33–40.

  2. 2

    Barinov, S.M. and Komlev, V.S., Calcium-phosphate bone cements (a review), Part 2. Composites and medical applications, Materialovedenie, 2014, no. 2, pp. 35–45.

  3. 3

    Bozhkova, S.A., Novokshonova, A.A., and Konev, V.A., Current trends in local antibacterial therapy of periprosthetic infection and osteomyelitis: a review, Travmatol. Ortop. Ross., 2015, no. 3 (77), pp. 92–107.

  4. 4

    Zilberman, M. and Elsner, J.J., Antibiotic-eluting medical devices for various applications, J. Controlled Release, 2008, vol. 130, no. 3, pp. 202–215.

    CAS  Article  Google Scholar 

  5. 5

    Kirilova, I.A., Anatomical and functional properties of bone as the basis for the creation of bone-plastic materials for traumatology and orthopedics (anatomical and experimental research), Doctoral (Med.) Dissertation, Novosibirsk, 2011.

  6. 6

    Kyllönen, L., D’Este, M., Alini, M., and Eglin, D., Local drug delivery for enhancing fracture healing in osteoporotic bone, Acta Biomater., 2015, vol. 11, pp. 412–434.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7

    Larsson, S., Cement augmentation in fracture treatment, Scand. J. Surg., 2006, vol. 95, no. 2, pp. 111–118.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Ahn, D.K., et al., Spinal cord injury caused by bone cement after percutaneous vertebroplasty-one case of long-term follow-up and the result of delayed removal, J. Korean Orthop. Assoc., 2009, vol. 44, no. 3, pp. 386–390.

    Article  Google Scholar 

  9. 9

    Roeder, B., van Gils, C.C., and Maling, S., Antibiotic beads in the treatment of diabetic pedal osteomyelitis, J. Foot Ankle Surg., 2000, vol. 39, no. 2, pp. 124–130.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Hess, U., Shahabi, S., Treccani, L., Streckbein, P., Heiss, C., and Rezwan, K., Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy, Mater. Sci. Eng., C, 2017, vol. 77, pp. 427–435.

    CAS  Article  Google Scholar 

  11. 11

    Loca, D., Sokolova, M., Locs, J., Smirnova, A., and Irbe, Z., Calcium phosphate bone cements for local vancomycin delivery, Mater. Sci. Eng., C, 2015, vol. 49, pp. 106–113.

    CAS  Article  Google Scholar 

  12. 12

    Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–29.

    CAS  Article  Google Scholar 

  13. 13

    Ferguson, J., Diefenbeck, M., and McNally, M., Ceramic biocomposites as biodegradable antibiotic carriers in the treatment of bone infections, J. Bone Joint Infect., 2017, vol. 2, no. 1, pp. 38–51.

    Article  Google Scholar 

  14. 14

    Parent, M., Baradari, H., Champion, E., Damia, C., and Viana-Trecant, M., Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance, J. Controlled Release, 2017, vol. 252, pp. 1–17.

    CAS  Article  Google Scholar 

  15. 15

    Ginebra, M.P., Traykova, T., and Planell, J.A., Calcium phosphate cements as bone drug delivery systems: a review, J. Controlled Release, 2006, vol. 113, no. 2, pp. 102–110.

    CAS  Article  Google Scholar 

  16. 16

    Terukina, T., Saito, H., Tomita, Y., Hattori, Y., and Otsuka, M., Development and effect of a sustainable and controllable simvastatin-releasing device based on PLGA microspheres/carbonate apatite cement composite: in vitro evaluation for use as a drug delivery system from bone-like biomaterial, J. Drug Delivery Sci. Technol., 2017, vol. 37, pp. 74–80.

    CAS  Article  Google Scholar 

  17. 17

    Entsiklopediya lekarstv–RLS, 2018 (Encyclopedia of Medicinal Drugs–Register, 2018), Vyshkovskii, G.L., Ed., Moscow: Vedant, 2017, no. 26.

  18. 18

    Smirnov, V.V., Barinov, S.M., Komlev, V.S., and Gol’dberg, M.A., High-strength bone cements based on tetracalcium and tricalcium phosphates, Materialovedenie, 2012, no. 6, pp. 50–53.

  19. 19

    van Lieshout, E.M., van Kralingen, G.H., El-Massoudi, Y., Weinans, H., and Patka, P., Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery, BMC Musculoskeletal Disord., 2011, vol. 12, no. 1, p. 34.

    Article  Google Scholar 

  20. 20

    Sugo, K., Kawashima, R., Nakasu, M., and Nakajima, T., Antibiotic elution profile and physical properties of a novel calcium phosphate cement material, J. Ceram. Soc. Jpn., 2016, vol. 124, no. 9, pp. 954–958.

    CAS  Article  Google Scholar 

  21. 21

    Sasaki, T., et al., In vitro elution of vancomycin from calcium phosphate cement, J. Arthroplasty, 2005, vol. 20, no. 8, pp. 1055–1059.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Noukrati, H., Cazalbou, S., Demnati, I., Rey, C., Barroug, A., and Combes, C., Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system, Mater. Sci. Eng., C, 2016, vol. 59, pp. 177–184.

    CAS  Article  Google Scholar 

  23. 23

    Dorozhkin, S.V., Self-setting calcium orthophosphate formulations: cements, concretes, pastes and putties, Int. J. Mater. Chem., 2011, vol. 1, no. 1, pp. 1–48.

    Google Scholar 

  24. 24

    Saleh, A.T., Ling, L.S., and Hussain, R., Injectable magnesium-doped brushite cement for controlled drug release application, J. Mater. Sci., 2016, vol. 51, no. 16, pp. 7427–7439.

    CAS  Article  Google Scholar 

  25. 25

    Wang, W. and Yeung, K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: a review, Bioactive Mater., 2017, vol. 2, no. 4, pp. 224–247.

    Article  Google Scholar 

  26. 26

    Denkena, B., et al., Biocompatible magnesium alloys as degradable implant materials-machining induced surface and subsurface properties and implant performance, in Special Issues on Magnesium Alloys, London: IntechOpen. 2011, chap. 5, pp. 109–128.

    Google Scholar 

  27. 27

    Manivasagam, G. and Suwas, S., Biodegradable Mg and Mg based alloys for biomedical implants, Mater. Sci. Technol., 2014, vol. 30, no. 5, pp. 515–520.

    CAS  Article  Google Scholar 

  28. 28

    Zheng, Y., Magnesium Alloys as Degradable Biomaterials, Boca Raton, FL: CRC Press, 2015, pp. 14–17.

    Google Scholar 

  29. 29

    Huang, B., et al., Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface, Sci. Rep., 2016, vol. 6, p. 24323.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Xiong, G., et al., Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering, Curr. Appl. Phys., 2016, vol. 16, no. 8, pp. 830–836.

    Article  Google Scholar 

  31. 31

    Narita, K., Kobayashi, E., and Sato, T., Sintering behavior and mechanical properties of magnesium/β-tricalcium phosphate composites sintered by spark plasma sintering, Mater. Trans., 2016, vol. 57, no. 9, pp. 1620–1627.

    CAS  Article  Google Scholar 

  32. 32

    Zhang, J., Ma, X., Lin, D., Shi, H., Yuan, Y., Tang, W., Zhou, H., Guo, H., Qiana, J., Liu, C., et al., Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism, Biomaterials, 2015, vol. 53, pp. 251–264.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Kanter, B., Vikman, A., Brückner, T., Schamel, M., Gbureck, U., and Ignatius, A., Bone regeneration capacity of magnesium phosphate cements in a large animal model, Acta Biomater., 2018, vol. 69, pp. 352–361.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Ostrowski, N., Roy, A., and Kumta, P.N., Magnesium phosphate cement systems for hard tissue applications: a review, ACS Biomater. Sci. Eng., 2016, vol. 2, no. 7, pp. 1067–1083.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Wang, Z., et al., Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material, Sci. Rep., 2017, vol. 7, no. 1, p. 823.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36

    Gelli, R., et al., Tuning the properties of magnesium phosphate-based bone cements: effect of powder to liquid ratio and aqueous solution concentration, Mater. Sci. Eng., C, 2019, vol. 95, pp. 248–255.

    CAS  Article  Google Scholar 

  37. 37

    Vorndran, E., et al., Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4-system, J. Mater. Sci.: Mater. Med., 2011, vol. 22, no. 3, pp. 429–436.

    CAS  Google Scholar 

  38. 38

    Fan, S. and Chen, B., Experimental study of phosphate salts influencing properties of magnesium phosphate cement, Constr. Build. Mater., 2014, vol. 65, pp. 480–486.

    Article  Google Scholar 

  39. 39

    Yu, S., et al., Magnesium phosphate based cement with improved setting, strength and cytocompatibility properties by adding Ca(H2PO4)2H2O and citric acid, J. Mech. Behav. Biomed. Mater., 2019, vol. 91, pp. 229–236.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Barralet, J.E., Marino, F.A.T., and Flynn, A.P., US Patent 20190192725A1, 2019. https://patentimages. storage.googleapis.com/35/92/c4/5dea1fb4e4b644/ US20190192725A1.pdf.

  41. 41

    Yang, N., Shi, C., Yang, J., and Chang, Y., Research progresses in magnesium phosphate cement–based materials, J. Mater. Civil Eng., 2013, vol. 26, no. 10, art. ID 04014071.

    Article  CAS  Google Scholar 

  42. 42

    Lally, T., US Patent 6 533 821, 2003.

  43. 43

    Bertone, A.L., Hackett, B., Litsky, A.S., Johnson, A.L., Kaeding, C.C., and Lally, T.A., magnesium injectable formulation adheres bone to bone and tendon to bone, Trans. Orthop. Res. Soc., 2005, vol. 30, p. 1007.

    Google Scholar 

  44. 44

    Mestres, G. and Ginebra, M.P., Novel magnesium phosphate cements with high early strength and antibacterial properties, Acta Biomater., 2011, vol. 7, no. 4, pp. 1853–1861.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Mestres, G., Abdolhosseini, M., Bowles, W., Huang, S.H., Aparicio, C., Gorr, S.-U., and Ginebra, M.P., Antimicrobial properties and dentin bonding strength of magnesium phosphate cements, Acta Biomater., 2013, vol. 9, no. 9, pp. 8384–8393.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Liu, W., Zhai, D., Huan, Z., Wu, C., and Chang, J., Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility, Acta Biomater., 2015, vol. 21, pp. 217–227.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47

    Sopcak, T., Medvecky, L., Giretova, M., Stulajterova, R., and Durisin, J., Hydrolysis, setting properties and in vitro characterization of wollastonite/newberyite bone cement mixtures, J. Biomater. Appl., 2018, vol. 32, no. 7, pp. 871–885.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Yang, G., Liu, J., Li, F., Pan, Z., Ni, X., Shen, Y., Xu, H., and Huang, Q., Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications, Mater. Sci. Eng., C, 2014, vol. 35, pp. 70–76.

    Article  CAS  Google Scholar 

  49. 49

    Cabrejos-Azama, J., Alkhraisat, M.H., Rueda, C., Torres, J., Pintado, C., Blanco, L., and López-Cabarcos, E., Magnesium substitution in brushite cements: efficacy of a new biomaterial loaded with vancomycin for the treatment of Staphylococcus aureus infections, Mater. Sci. Eng., C, 2016, vol. 61, pp. 72–78.

    CAS  Article  Google Scholar 

  50. 50

    Brückner, T., Meininger, M., Groll, J., Kübler, A.C., and Gbureck, U., Magnesium phosphate cement as mineral bone adhesive, Materials, 2019, vol. 12, no. 23, pp. 3819.

    PubMed Central  Article  CAS  Google Scholar 

  51. 51

    Goldberg, M.A., Smirnov, V.V., Antonova, O.S., Khairutdinova, D.R., Smirnov, S.V., Krylov, A.I., Sergeeva, N.S., Sviridova, I.K., Kirsanova, V.A., Ahmedova, S.A., Zhevnenko, S.N., and Barinov, S.M., Magnesium-substituted calcium phosphate bone cements containing MgO as a separate phase: synthesis and in vitro behavior, Mendeleev Commun., 2018, vol. 28, no. 3, pp. 329–331.

    CAS  Article  Google Scholar 

  52. 52

    Wu, F., Wei, J., Guo, H., Chen, F., Hong, H., and Liu, C., Self-setting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration, Acta Biomater., 2008, vol. 4, no. 6, pp. 1873–1884.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Wu, F., Su, J.C., Wei, J., Guo, H., and Liu, C.S., Injectable bioactive calcium-magnesium phosphate cement for bone regeneration, Biomed. Mater., 2008, vol. 3, art. ID 044105.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  54. 54

    Jia, J., Zhou, H., Wei, J., Jiang, X., Hua, H., Chen, F., Wei, S., Shin, J.W., and Liu, C., Development of magnesium calcium phosphate biocement for bone regeneration, J. R. Soc. Interface, 2010, vol. 7, no. 49, pp. 1171–1180.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Goldberg, M.A., Smirnov, V.V., Antonova, O.S., Smirnov, S.V., Shvorneva, L.I., Kutsev, S.V., and Barinov, S.M., Magnesium-substituted calcium phosphate cements with (Ca + Mg)/P = 2, Dokl. Chem., 2016, vol. 467, no. 1, pp. 100–104.

    CAS  Article  Google Scholar 

  56. 56

    Theuretzbacher, U., Accelerating resistance, inadequate antibacterial drug pipelines and international responses, Int. J. Antimicrob. Agents, 2012, vol. 39, no. 4, pp. 295–299.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Jayasree, R., Kumar, T.S., Perumal, G., and Doble, M., Drug and ion releasing tetracalcium phosphate based dual action cement for regenerative treatment of infected bone defects, Ceram. Int., 2018, pp. 9227–9235.

  58. 58

    Šupova, M., Substituted hydroxyapatites for biomedical applications: a review, Ceram. Int., 2015, vol. 41, no. 8, pp. 9203–9231.

    Article  CAS  Google Scholar 

  59. 59

    Rau, J.V., Wu, V.M., Graziani, V., Fadeeva, I.V., Fomin, A.S., Fosca, M., and Uskoković, V., The bone building blues: self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria, Mater. Sci. Eng., C, 2017, vol. 79, pp. 270–279.

    CAS  Article  Google Scholar 

  60. 60

    Gbureck, U., Knappe, O., Grover, L.M., and Barralet, J.E., Antimicrobial potency of alkali ion substituted calcium phosphate cements, Biomaterials, 2005, vol. 26, no. 34, pp. 6880–6886.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Graziani, V., Fosca, M., Egorov, A.A., Zobkov, Y.V., Fedotov, A.Y., Baranchikov, A.E., Ortenzi, M., Caminiti, R., Komlev, V.S., and Rau, J.V., Zinc-releasing calcium phosphate cements for bone substitute materials, Ceram. Int., 2016, vol. 42, no. 15, pp. 17310–17316.

    CAS  Article  Google Scholar 

  62. 62

    Fedotov, A.Y., Baranchikov, A.E., Ortenzi, M., Caminiti, R., Komlev, V.S., and Rau, J.V., Zinc-releasing calcium phosphate cements for bone substitute materials, Ceram. Int., 2016, vol. 42, no. 15, pp. 17310–17316.

    Article  CAS  Google Scholar 

  63. 63

    Eltohamy, M., Kundu, B., Moon, J., Lee, H.Y., and Kim, H.W., Anti-bacterial zinc-doped calcium silicate cements: bone filler, Ceram. Int., 2018, vol. 44, no. 11, pp. 13031–13038.

    CAS  Article  Google Scholar 

  64. 64

    Siek, D., Ślósarczyk, A., Przekora, A., Belcarz, A., Zima, A., Ginalska, G., and Czechowska, J., Evaluation of antibacterial activity and cytocompatibility of α-TCP based bone cements with silver-doped hydroxyapatite and CaCO3, Ceram. Int., 2017, vol. 43, no. 16, pp. 13997–14007.

    CAS  Article  Google Scholar 

  65. 65

    Jacquart, S., Siadous, R., Henocq-Pigasse, C., Bareille, R., Roques, C., Rey, C., and Combes, C., Composition and properties of silver-containing calcium carbonate–calcium phosphate bone cement, J. Mater. Sci.: Mater. Med., 2013, vol. 24, no. 12, pp. 2665–2675.

    CAS  Google Scholar 

  66. 66

    Rau, J., Fosca, M., Graziani, V., Egorov, A., Zobkov, Y., Fedotov, A., Ortenzi, M., Caminiti, R., Baranchikov, A.E., and Komlev, V., Silver-doped calcium phosphate bone cements with antibacterial properties, J. Funct. Biomater., 2016, vol. 7, no. 2, pp. 10.

    PubMed Central  Article  CAS  Google Scholar 

  67. 67

    Ewald, A., Hösel, D., Patel, S., Grover, L.M., Barralet, J.E., and Gbureck, U., Silver-doped calcium phosphate cements with antimicrobial activity, Acta Biomater., 2011, vol. 7, no. 11, pp. 4064–4070.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Sikder, P., et al., Silver (Ag) doped magnesium phosphate microplatelets as next-generation antibacterial orthopedic biomaterials, J. Biomed. Mater. Res., Part B, 2019, vol. 108, no. 3, pp. 986–989.

    Google Scholar 

  69. 69

    Uskoković, V., Graziani, V., Wu, V.M., Fadeeva, I.V., Fomin, A.S., Presniakov, I. A., Fosca, M., Ortenzi, M., Caminiti, R., and Rau, J.V., Gold is for the mistress, silver for the maid: enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements, Mater. Sci. Eng., C, 2019, vol. 94, pp. 798–810.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Foundation for Basic Research, project no. 18-33-20170-mol-a-ved. Access to the electronic database of scientific publications was obtained within the framework of government task no. 075-00947-20-00.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Goldberg.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldberg, M.A., Smirnov, V.V., Krokhicheva, P.A. et al. The Creation and Application Outlook of Calcium Phosphate and Magnesium Phosphate Bone Cements with Antimicrobial Properties (Review). Inorg. Mater. Appl. Res. 12, 195–203 (2021). https://doi.org/10.1134/S2075113321010093

Download citation

Keywords:

  • calcium phosphate bone cements
  • magnesium phosphate bone cements
  • antibacterial properties
  • drug carriers
  • antimicrobial drugs