Fabrication of Bismuth Films by a Melt Spinning Method and the Influence of Annealing on Their Microstructure

Abstract

The conditions of fabrication of bismuth films with thickness from 5 to 30 μm by a melt spinning method were studied. The microstructure of the fabricated films in the cross section was analyzed using SEM. The Bi films with thickness more than 5 μm consisted of crystallites with sizes up to 30 μm and had a layered structure with crystal twins. The films with thickness of ~5 μm contained no crystallites, however, after annealing at 150–200°C for 1 h, there appeared bismuth nanocrystals with sizes from 10 to 100 nm. Annealing at higher temperatures promoted an increase in the size of nanocrystals and formation of crystallites of pyramidal shape with sizes up to 500 nm.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Saikawa, K., Effective Hamiltonian describing the electronic states of bismuth-type crystals, J. Phys. Soc. Jpn., 1970, vol. 29, no. 3, pp. 562–569.

    CAS  Article  Google Scholar 

  2. 2

    Schubnikov, L.V. and de Haas, W.J., A new phenomenon in the change of resistance in a magnetic field of single crystals of bismuth, Nature, 1930, vol. 126, no. 3179, p. 500.

    Article  Google Scholar 

  3. 3

    Obreimow, I.W. and Schubnikow, L.W., Eine Methode zur Herstellung einkristalliger Metalle, Z. Phys., 1924, vol. 25, no. 1, pp. 31–36.

    Article  Google Scholar 

  4. 4

    Kapitza, P., The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems, Proc. R. Soc. A, 1928, vol. 119, pp. 358–443.

    CAS  Google Scholar 

  5. 5

    Kuznetsov, V.D., Kristally i kristallizatsiya (Crystals and Crystallization), Moscow: Gostekhizdat, 1954.

  6. 6

    Brown, D.M. and Heumaun, F.R., Growth of bismuth antimony single-crystal alloys, J. Appl. Phys., 1964, vol. 35, pp. 1947–1951.

    CAS  Article  Google Scholar 

  7. 7

    Zemskov, V.S., Belaya, A.D., Beluy, Yu.S., and Kozhemyakin, G.N., Growth and investigation of thermoelectric properties of Bi–Sb alloy single crystals, J. Cryst. Growth, 2000, vol. 212, pp. 161–166.

    CAS  Article  Google Scholar 

  8. 8

    Yang, F.Y., Liu, R., Chien, C.L., and Searson, P.C., Large magnetoresistance and finite-size effects in electrodeposited single-crystal Bi thin films, Phys. Rev. Lett., 1999, vol. 82, pp. 3328–3331.

    CAS  Article  Google Scholar 

  9. 9

    Semiconductors and Semimetals. Spintronics, Dietl, T., Awschalom, D.D., Kaminska, M., and Ohno, H., Eds., Amsterdam: Elsevier, 2008, vol. 82.

    Google Scholar 

  10. 10

    Demidov, E.V., Grabov, V.M., Komarov, V.A., Kablukova, N.S., and Krushelnitskii, A.N., Topological insulator state in thin bismuth films subjected to plane tensile strain, Phys. Solid State, 2018, vol. 60, no. 3, pp. 457–460.

    CAS  Article  Google Scholar 

  11. 11

    Heremans, J., Thrush, C.M., Lin, Y.M., Cronin, S., Zhang, Z., Dresselhaus, M.S., and Mansfield, J.F., Bismuth nanowire arrays: synthesis and galvanomagnetic properties, Phys. Rev. B, 2000, vol. 61, pp. 2921–2930.

    CAS  Article  Google Scholar 

  12. 12

    Meglei, I.D., Kantser, V., Dantu, M., Rusu, A., and Donu, S., High magnetoresistance in inhomogeneous bismuth microwires, Mold. J. Phys. Sci., 2008, vol. 7, no. 1, pp. 61–63.

    Google Scholar 

  13. 13

    Ning, W., Kong, F., Hi, C., Graf, D., Du, H., Han, Y., Yang, J., Yang, K., Tian, M., and Zhang, Y., Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons, ACS Nano, 2014, vol. 8, no. 7, art. ID 7506-12.

    CAS  Article  Google Scholar 

  14. 14

    Noskova, N.I., Ponomareva, E.G., Glazer, A.A.Г., Lukshina, V.A., and Potapov, A.P., Effect of preliminary deformation and low temperature annealing on the size of Fe73.5Cu1Nb3Si13.5B9 nanocrystals obtained by crystallization of an amorphous ribbon, Fiz. Met. Metalloved., 1993, vol. 76, no. 5, pp. 171–173.

    Google Scholar 

  15. 15

    Kozhemyakin, G.N., Shapovalov, V.A., Nikitenko, Yu.A., Ivanov, O.N., Kolesnikov, D.A., and Maradudina, O.N., Influence of annealing on nanocrystal formation in Ni amorphous alloy, Cryst. Rep., 2009, vol. 54, pp. 1242–1244.

    CAS  Article  Google Scholar 

  16. 16

    Inoue, A., Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys, Nanostruct. Mater., 1995, vol. 6, pp. 53–64.

    CAS  Article  Google Scholar 

  17. 17

    Kovneristyi, Yu.K., Ob”emno-amorfiziruyushchiesya metallicheskie splavy (Volume Amorphizing Metal Alloys), Moscow: Nauka, 1999.

  18. 18

    Zemskov, V.S., Belaya, A.D., and Kozhemyakin, G.N., The effect of uncontrollable impurities on thermoelectric properties of Bi-9 at. % Sb alloys, Izv. Akad. Nauk SSSR, Met., 1984, no. 5, pp. 194–195.

  19. 19

    Ast, C.R. and Höchst, H., Fermi surface of Bi(111) measured by photoemission spectroscopy, Phys. Rev. Lett., 2001, vol. 87, no. 17, art. ID 177602.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. N. Kozhemyakin or S. Yu. Kovalev or O. N. Soklakova.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozhemyakin, G.N., Kovalev, S.Y. & Soklakova, O.N. Fabrication of Bismuth Films by a Melt Spinning Method and the Influence of Annealing on Their Microstructure. Inorg. Mater. Appl. Res. 11, 727–730 (2020). https://doi.org/10.1134/S2075113320030259

Download citation

Keywords:

  • bismuth
  • melt spinning method
  • films
  • crystallites
  • annealing
  • nanocrystals