Diagnostics Using Polarization Spectroscopy Methods of Powerful Fluxes of Fast Particles in a Pinch Plasma Used to Test Fusion Energy Materials


The necessity and the possibility of diagnosing powerful fluxes of fast particles generated in Z-pinches, including in installations of the Plasma Focus type, are substantiated. These flows are the main tool used for testing materials that are promising for use in thermonuclear energy and aerospace engineering. It is proposed to carry out investigations using helium plasma. The prospects of applying for this purpose investigations of the polarization parameters of radiation observed in a helium line with a wavelength of 5015 Å and relating to the spectral transition 2S1–3P1 are studied. This line is located in the visible region of the spectrum, which greatly facilitates performing this type of diagnostics of high-power pinch high-flux plasma flows.

This is a preview of subscription content, log in to check access.


  1. 1

    Krishnan, M., The dense plasma focus: A versatile dense pinch for diverse applications, IEEE Trans. Plasma Sci., 2012, vol. 40, no. 12, pp. 3189–3221.

    CAS  Article  Google Scholar 

  2. 2

    Bernard, A., Bruzzone, H., Choi, P., Chuaqui, E., et al., Scientific status of plasma focus research, J. Moscow Phys. Soc., 1998, vol. 8, pp. 93–170.

    CAS  Google Scholar 

  3. 3

    Gribkov, V.A., Banaszak, A., Bienkowska, B., Dubrovsky, A.V., et al., Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 12, p. 3592. https://doi.org/10.1088/0022-3727/40/12/008

    CAS  Article  Google Scholar 

  4. 4

    Gribkov, V.A., Physical processes taking place in dense plasma focus devices at the interaction of hot plasma and fast ion streams with materials under test, Plasma Phys. Control Fusion, 2015, vol. 57, no. 6, art. ID 065010. https://doi.org/10.1088/0741-3335/57/6/065010

    CAS  Article  Google Scholar 

  5. 5

    Entsiklopediya nizkotemperaturnoi plazmy. Seriya B. Spravochnye prilozheniya, bazy i banki dannykh. Tom IX-3. Radiatsionnaya plazmodinamika (Encyclopedia of Low Temperature Plasma, Series B: Reference Data, Bases, and Databases, Vol. 9-3: Radiation Plasmadynamics), Fortov, V.E., Ed., Moscow: Yanus-K, 2008.

  6. 6

    Petkov, E.E., Safronova, A.S., Kantsyrev, V.L., Shlyap-tseva, V.V., et al., L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources, Rev. Sci. Instrum., 2016, vol. 87, art. ID 11E315. https://doi.org/10.1063/1.4960534

  7. 7

    Kubkowska, M., Jakubowska, K., Skladnik-Sadowska, E., Malinowski, K., et al., Spectroscopic investigation of PF-1000 discharges under different experimental conditions, Vopr. At. Nauki Tekh., Ser.: Fiz. Plazmy, 2010, no. 6, pp. 202–204.

  8. 8

    Jakubowski, L., Sadowski, M.J., and Baronova, E.O., X-ray polarization studies of plasma focus experiments with single hot spots, Nucl. Fusion, 2004, vol. 44, no. 3, pp. 395–399.

    CAS  Article  Google Scholar 

  9. 9

    Plasma Polarization Spectroscopy, Atomic, Optical, and Plasma Physics Series vol. 44, Fujimoto, T. and Iwamae, A., Eds., New York: Springer, 2008.

    Google Scholar 

  10. 10

    Hammond, P., Karras, W., McConkey, A.G., and McConkey, J.W., Polarization of rare-gas radiation in the vacuum-ultraviolet region excited by electron impact: Helium and neon, Phys. Rev. A, 1989, vol. 40, no. 4, pp. 1804–1810.

    CAS  Article  Google Scholar 

  11. 11

    Noren, C., McConkey, J.W., Hammond, P., and Bartschat, K., Near-threshold study of the polarization of He resonance radiation using an energy-selected electron beam, Phys. Rev. A, 1996, vol. 53, no. 3, pp. 1559–1566.

    CAS  Article  Google Scholar 

  12. 12

    Kazantsev, S.A. and Hénoux, J.-C., Polarization Spectroscopy of Ionized Gases, New York: Springer, 1995.

    Google Scholar 

  13. 13

    Shapochkin, M.B., Analytical calculation of degree of linear polarization of the Hα and Hβ lines in hydrogencontaining ionized gas, Plasma Phys. Rep., 2008, vol. 34, no. 12, pp. 1054–1058.

    CAS  Article  Google Scholar 

  14. 14

    Shapochkin, M.B., Full polarization beam experiment, J. Phys. B: At., Mol. Opt. Phys., 2002, vol. 35, no. 22, pp. 4583–4606.

    CAS  Article  Google Scholar 

  15. 15

    Vainshtein, L.A., Sobel’man, I.I., and Yukov, E.A., Vozbuzhdenie atomov i ushirenie spektral’nykh linii (Excitation of Atoms and Broadening of Spectral Lines), Moscow: Nauka, 1979.

  16. 16

    Shapochkin, M.B. An interpolation formula for the degree of polarization of radiation, Phys. Scr., 1999, vol. 60, no. 4, pp. 335–339.

    CAS  Article  Google Scholar 

  17. 17

    Haug, E., Electron impact polarization of X-ray lines from hydrogen-like ions during solar flares, Sol. Phys., 1981, vol. 71, no. 1, pp. 77–89.

    CAS  Article  Google Scholar 

  18. 18

    Pankrashkin, Yu.B. and Shapochkin, M.B., Investigation of the anisotropic electron distribution function in a glow discharge in hydrogen, Plasma Phys. Rep., 2003, vol. 29, no. 12, pp. 1056–1061.

    CAS  Article  Google Scholar 

Download references


This work was carried out according to state assignment no. 007-00129-18-00 and supported by the International Atomic Energy Agency, grants of IAEA CRP nos. 19248, 19253, and 22745, as well as grants from the Russian Foundation for Basic Research nos. 16-08-00189a and 16-08-00338a.

Author information



Corresponding authors

Correspondence to V. A. Gribkov or M. B. Shapochkin.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gribkov, V.A., Shapochkin, M.B. Diagnostics Using Polarization Spectroscopy Methods of Powerful Fluxes of Fast Particles in a Pinch Plasma Used to Test Fusion Energy Materials. Inorg. Mater. Appl. Res. 11, 541–546 (2020). https://doi.org/10.1134/S2075113320030168

Download citation


  • pinch
  • spectropolarimetry
  • particle flow diagnostics