Growth of Allotropic Modifications of Carbon on a Thin Tungsten Wire from Vapor Phase with the Use of Microwave Plasma

Abstract

The process of deposition of allotropic modifications of carbon from the gas phase (5 vol % methane) with the use of microwave plasma on W wire 20 μm thick has been studied. The microwave power was changed in the range from 3 to 5 kW. The investigations of the structure of coatings, as well as the results of Raman spectroscopy, made it possible to establish that a microwave power of 3 kW results in the deposition of a diamond film with a crystallite size from 1 to 5 μm, microwave power of 4 kW causes the deposition of diamond-like carbon, and an increase in power up to 5 kW leads to the deposition of multigraphene film.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Ma, X., Shi, L., He, X., et al., Graphitization resistance determines super hardness of lonsdaleite, nanotwinned and nanopolycrystalline diamond, Carbon, 2018, vol. 133, pp. 69–76.

    CAS  Article  Google Scholar 

  2. 2

    Rani, R., Sankaran, K.J., Panda, K., et al., Tribofilm formation in ultrananocrystalline diamond film, Diamond Relat. Mater., 2017, vol. 78, pp. 12–23.

    CAS  Article  Google Scholar 

  3. 3

    Bing, D., Jiwen, Z., Ralchenko, V., et al., Thermal conductivity of free-standing CVD diamond films by growing on both nuclear and growth sides, Diamond Relat. Mater., 2017, vol. 76, pp. 9–13.

    Article  Google Scholar 

  4. 4

    Balandin, A.A., Ghosh, S., Bao, W., et al., Extremely high thermal conductivity of graphene: Experimental study, Nano Lett., 2008, vol. 8, no. 3, pp. 902–907.

    CAS  PubMed  Google Scholar 

  5. 5

    Chen, G., Yang, W., Xin, L., Wang, P., et al., Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 2018, vol. 735, pp. 777–786.

    CAS  Article  Google Scholar 

  6. 6

    Li, M., Zhang, L., Pengyu, Z., et al., A new design of composites for thermal management: Aluminium reinforced with continuous CVD diamond coated W spiral wires, Mater. Des., 2016, vol. 101, pp. 109–116.

    Article  Google Scholar 

  7. 7

    Bushuev, E.V., Yurov, V.Yu., Bolshakov, A.P., et al., Express in situ measurement of epitaxial CVD diamond film growth kinetics, Diamond Relat. Mater., 2017, vol. 72, pp. 61–70.

    CAS  Article  Google Scholar 

  8. 8

    Maltsev, P.P., Redkin, S.V., Glinskiy, I.A., et al., Heatsink diamond nanostructures for microwave semiconductor electronics, Nanotechnol. Russ., 2016, vol. 11, nos. 7–8, pp. 480–490.

  9. 9

    Elo, K., Mooste, M., Kozlova, J., Marandi, M., Sammelselg, V., and Kaido, T., Surface and electrochemical characterization of CVD grown graphene sheets, Electrochem. Commun., 2013, vol. 35, pp. 26–29.

    Article  Google Scholar 

  10. 10

    François, S., Khaled, H., Bonnin, X., and Alix, G., Microwave engineering of plasma-assisted CVD reactors for diamond deposition, J. Phys.: Condens. Matter, 2009, vol. 21, no. 36, pp. 1–16.

    Google Scholar 

  11. 11

    Bulatov, M.F., Bulatova, A.N., Yu, J., and Khan, J., Evaluation of structural perfection of CVD-graphene by Raman spectrometry method, Materialy II Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Perspektivnye razrabotki nauki i tekhniki–2011,” Przemysl, Pol’sha, 7–15 noyabrya 2011 (Proc. II Int. Conf. “Advanced Developments of Science and Engineering–2011,” Przemysl, Poland, November 7–15, 2011), Przemysl: Nauka i Studia, 2011. http://www.rusnauka.com/ 28_PRNT_2011/Phisica/2_94471.doc.htm.

  12. 12

    Karabutov, A.V., Konov, V.I., Ralchenko, V.G., et al., Comparison of field electron emission from DLC films produced by four different deposition techniques, Diamond Relat. Mater., 1998, vol. 7, pp. 802–806.

    CAS  Article  Google Scholar 

  13. 13

    Wu, H., Huang, H., Jiang, F., and Xu, X., Mechanical wear of different crystallographic orientations for single abrasive diamond scratching on Ta12W, Int. J. Refract. Met. Hard Mater., 2016, vol. 54, pp. 260–269.

    CAS  Article  Google Scholar 

Download references

Funding

The study was supported by the Foundation for the Promotion of Innovation under the agreement of April 24, 2018, no. 12697GU/2017 (UMNIK program).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. A. Eremin or V. N. Anikin or D. V. Kuznetsov or I. A. Leontiev.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eremin, S.A., Anikin, V.N., Kuznetsov, D.V. et al. Growth of Allotropic Modifications of Carbon on a Thin Tungsten Wire from Vapor Phase with the Use of Microwave Plasma. Inorg. Mater. Appl. Res. 11, 568–571 (2020). https://doi.org/10.1134/S2075113320030120

Download citation

Keywords:

  • diamond film
  • microwave
  • tungsten
  • composite