Skip to main content
Log in

Mechanical Properties of Titanium Nickelide–Tantalum–Chitosan Composite Material

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A biocompatible material characterized by gradient structure titanium nickelide–tantalum–biodegradable polymer layer was designed for the manufacture of medical implants. The mechanical characteristics of the material and components were studied. The structure and composition were determined by SEM and Auger electron spectroscopy. The formation of surface layers does not significantly affect the mechanical characteristics of the support; high adhesion between the layers and the support is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gyunter, V.E., Itin, V.I., Monasevich, L.A., et al., Effekty pamyati formy i ikh primenenie v meditsine (Shape Memory Effects and Their Application in Medicine), Novosibirsk: Nauka, 1992.

  2. Gyunter, V.O., Khodorenko, V.N., Yasenchuk, Yu.F., and Chekalkin, T.L., Nikelid titana. Meditsinskii material novogo pokoleniya (Titanium Nickelide. Medical Material of New Generation), Tomsk: Nauchno-Issled. Inst. Med. Mater. Implantov Pamyat’yu Formy, 2006.

  3. Petrini, L. and Migliavacca, F., Biomedical applications of shape memory alloys, J. Metall., 2011, vol. 2011, art. ID 501483.

    Google Scholar 

  4. Stoeckel, D., Nitinol medical devices and implants, Minimally Invasive Ther. Allied Technol., 2000, vol. 9, pp. 81–88.

    Article  Google Scholar 

  5. Zabolotnyi, V.T., Kolmakov, A.G., Goncharenko, B.A., Sevost’yanov, M.A., Dolgushin, B.I., and Cherkasov, V.A., Development and production of new design of medical devices like cava filter from nanostructured nitinol, in Fundamental’nye nauki – meditsine. Tezisy dokladov na konferentsiyakh i seminarakh, provedennykh v ramkakh nauchnykh podprogramm v 2012 godu (Conference and Seminar Abstracts of Papers Performed within the Scientific Subprogram in 2012 “Fundamental Sciences for Medicine”), Moscow: Slovo, 2012.

  6. Zabolotnyi, V.T., Kolmakov, A.G., Sevost’yanov, M.A., and Nasakina, E.O., Improvement of medical devices for endovascular operations, Integral, 2013, no. 4 (72), pp. 42–45.

  7. Gu, Y.W., Tay, B.Y., Lim, C.S., Yong, M.S., Biomimetic deposition of apatite coating on surface-modified NiTi alloy, Biomaterials, 2005, vol. 26, no. 34, pp. 6916–6923.

    Article  CAS  PubMed  Google Scholar 

  8. Krupa, D., Baszkiewicz, J., Kozubowski, J.A., Barcz, A., Sobczak, J.W., Biliński, A., Lewandowska-Szumieł, M., and Rajchel, B., Effect of dual ion implantation of calcium and phosphorus on the properties of titanium, Biomaterials, 2005, vol. 26, no. 16, pp. 2847–2856.

    Article  CAS  PubMed  Google Scholar 

  9. Gnedenkov, S.V., Sharkeev, Yu.P., Sinebryukhov, S.L., Khrisanfova, O.A., Legostaeva, E.V., Puz’, A.V., and Khlusov, I.A., Functional coatings for implant materials, Tikhookean. Med. Zh., 2012, no. 1, pp. 12–19.

  10. Surmenev, R.A., Ryabtseva, M.A., Shesterikov, E.V., Pichugin, V.F., Peitsch, T., and Epple, M., The release of nickel from nickel–titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by rf-magnetron sputtering, J. Mater. Sci.-Mater. Med., 2010, vol. 21, pp. 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  11. Bazhin, P.M., Stolin, A.M., and Titov, N.V., Composite protective coatings based on TiC–W2C–Co obtained by electric arc surfacing using SHS-electrodes on the parts of agricultural machines, Kompoz. Nanostrukt., 2015, vol. 7, no. 4, pp. 2–9.

    Google Scholar 

  12. Li, P., Zhang, X., Xu, R., Wang, W., Liu, X., Yeung, K.W.K., and Chu, P.K., Electro-chemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application, Surf. Coat. Technol., 2013, vol. 232, pp. 370–375.

    Article  CAS  Google Scholar 

  13. Stolin, A.M. and Bazhin, P.M., Manufacture of multipurpose composite and ceramic materials in the combustion regime and high-temperature deformation (SHS extrusion), Theor. Found. Chem. Eng., 2014, vol. 48, no. 6, pp. 751–763.

    Article  CAS  Google Scholar 

  14. Cheng, Y., Cai, W., Li, H.T., and Zheng, Y.F., Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity, J. Mater. Sci., 2006, vol. 41, pp. 4961–4964.

    Article  CAS  Google Scholar 

  15. Zein El Abedin, S., Welz-Biermann, U., and Endres, F., A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behavior of the coated alloy, Electrochem. Commun., 2005, vol. 7, no. 9, pp. 941–946.

    Article  CAS  Google Scholar 

  16. Nasakina, E.O., Baikin, A.S., Sergienko, K.V., Sevost’yanov, M.A., Kolmakov, A.G., Goncharenko, B.A., Zabolotnyi, V.T., Fadeev, R.S., Fadeeva, I.S., Gudkov, S.V., and Solntsev, K.A., Biocompatibility of nanostructured nitinol with titanium or tantalum surface composite layers formed by magnetron sputtering, Dokl. Chem., 2015, vol. 461, no. 1, pp. 86–88.

    Article  CAS  Google Scholar 

  17. Pelton, A.R., Huang, G.H., Moine, P., and Sinclair, R., Effects of thermal cycling on microstructure and properties in nitinol, Mater. Sci. Eng., A, 2012, vol. 532, pp. 130–138.

    Article  CAS  Google Scholar 

  18. Duerig, T.W., Melton, K.N., Wayman, C.M., and Stöckel, D., Engineering Aspects of Shape Memory Alloys, Oxford: Butterworth-Heinemann, 1990.

  19. Fedotov, A.Yu., Sevost’yanov, M.A., Sergienko, K.V., Teterina, A.Yu., Tsvang, F.M., Egorov, A.A., Komlev, V.S., Kolmakov, A.G., and Barinov, S.M., Chitosan-based films with medicines, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 330–333.

    Article  Google Scholar 

  20. Li, P., Zhang, X., Xu, R., Wang, W., Liu, X., Yeung, K.W.K., and Chu, P.K., Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application, Surf. Coat. Technol., 2013, vol. 232, pp. 370–375.

    Article  CAS  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 15-33-70006 mol_a_mos); the investigations of the alloy were performed in terms of the RF Government task no. 007-00129-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Nasakina.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasakina, E.O., Kaplan, M.A., Sudarchikova, M.A. et al. Mechanical Properties of Titanium Nickelide–Tantalum–Chitosan Composite Material. Inorg. Mater. Appl. Res. 10, 818–821 (2019). https://doi.org/10.1134/S2075113319040270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319040270

Keywords:

Navigation