Skip to main content
Log in

Methylcellulose Films Partially Crosslinked by Iron Compounds

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

An original method is proposed for the production of methylcellulose-based film materials. The method is based on obtaining a homogeneous MC mixture with sodium alginate in an aqueous solution and subsequently crosslinking the mixture of the polymers with iron salts owing to their interaction with the blocks of L-guluronic acid in the alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Coffey, D.G., Bell, D.A., and Henderson, A., Cellulose and cellulose derivatives, in Food Polysaccharides and Their Applications, Stephen, A.M., Ed., New York: Marcel Dekker, 1995, pp. 123–153.

    Google Scholar 

  2. Gold, G.T., Varma, D.M., Taub, P.J., and Nicoll, S.B., Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system, Carbohydr. Polym., 2015, vol. 134, pp. 497–507.

    Article  CAS  PubMed  Google Scholar 

  3. Fan, W., Du, H., An, Y., Guo, C., Wei, Y., and Hou, L., Fabrication and characterization of a hydroxyapatite–methylcellulose composite coating on the surface of AZ31 magnesium alloy, Mater. Lett., 2015, vol. 152, pp. 32–35.

    Article  CAS  Google Scholar 

  4. Rimdusit, S., Somsaeng, K., Kewsuwan, P., Jubsilp, C., and Tiptipakorn, S., Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methylcellulose hydrogel, Eng. J., 2012, vol. 16, no. 4, pp. 15–28.

    Article  Google Scholar 

  5. López De Dicastillo, C., Rodrí guez, F., Guarda, A., Rodriguez Mercado, F.J., and Galotto Lopez, M.J., Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications, Carbohydr. Polym., 2016, vol. 136, pp. 1052–1060.

  6. Sarkar, G., Ranjan Saha, N., Roy, I., Bhattacharyya, A., Adhikari, A., Rana, D., Bhowmik, M., Bose, M., Mishra, R., and Chattopadhyay, D., Cross-linked methyl cellulose/graphene oxide rate controlling membranes for in vitro and ex vivo permeation studies of diltiazem hydrochloride, RSC Adv., 2016, vol. 6, pp. 36136–36145.

    Article  CAS  Google Scholar 

  7. Lee, K.Y. and Mooney, D.J., Alginate: properties and biomedical applications, Prog. Polym. Sci., 2012, vol. 37, pp. 106–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pavlov, N.A., Teterina, A.Yu., Barinov, S.M., Komlev, V.S., and Fedotov, A.Yu., Composite hydrogels based on alginate-reinforced calcium phosphate ceramics for tissue engineering, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 47–49.

    Article  Google Scholar 

  9. Fedotov, A.Yu., Baranov, O.V., Pereloma, I.S., Egorov, A.A., Smirnov, I.V., Zobkov, Yu.V., Tete-rina, A.Yu., and Komlev, V.S., The microctructure formation and the composite properties based on alginate with antibacterial activity, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 4, pp. 644–648.

    Article  Google Scholar 

  10. Paredes Juárez, G.A., Spasojevic, M., Faas, M.M., and de Vos, P., Immunological and technical considerations in application of alginate-based microencapsulation systems, Front. Bioeng. Biotechnol., 2014, vol. 2, pp. 26–41.

  11. Pistone, S., Qoragllu, D., Smistad, G., and Hiorth, M., Formulation and preparation of stable cross-linked alginate–zinc nanoparticles in the presence of a mono-valent salt, Soft Matter, 2015, vol. 11, pp. 5765–5774.

    Article  CAS  PubMed  Google Scholar 

  12. Machida-Sano, I., Hirakawa, M., Matsumoto, H., Kamada, M., Ogawa, S., Satoh, N., and Namiki, H., Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels, Biomed. Mater., 2014, vol. 9, no. 2, p. 025007.

    Article  CAS  PubMed  Google Scholar 

  13. Narayanan, R.P., Melman, G., Letourneau, N.J., Mendelson, N.L., and Melman, A., Photodegradable iron(III) cross-linked alginate gels, Biomacromolecules, 2012, vol. 13, no. 8, pp. 2465–2471.

    Article  CAS  PubMed  Google Scholar 

  14. Voronkov, M.G., Baryshok, V.P., Gatsura, V.V., and Sernov, L.N., RF Patent 2059647, 1992.

  15. Ivanov, A.M. and Grechushenkov, E.A., RF Patent 2304575, 2006.

Download references

Funding

This work was performed under the financial support of the Russian Foundation for Basic Research, grant no. 16-03-00820-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Fadeeva.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeeva, I.V., Trofimchuk, E.S., Rogatkina, E.V. et al. Methylcellulose Films Partially Crosslinked by Iron Compounds. Inorg. Mater. Appl. Res. 10, 875–878 (2019). https://doi.org/10.1134/S2075113319040117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319040117

Keywords:

Navigation