Skip to main content
Log in

Structure and Properties of the Heat-Affected Zone of Low-Alloy Cold-Resistant Steel for Arctic Application

  • METAL SCIENCES. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—The paper presents the results of a comprehensive study of structural and property changes in the most dangerous regions of the heat-affected zone of low-alloy cold-resistant steel with a guaranteed yield strength of 355–390 MPa before and after the post-welding tempering, including those caused by the combined impact of heating temperature under tempering and deformation, compared to base metal. The simulation was performed using a DIL 805 dilatometer and a Gleeble 3800 complex. The results of the investigation of the structure and properties of actual welded joints after welding with different rates of energy input (3.5 and 6 kJ/mm) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Ceq = C + (Mo + Cr + V)/5 + (Cu + Ni)/15 + Mn/6, wt %.

  2. Pcm = C + (Mo + Cr + Cu)/20 + Si/30 + Ni/60 + Mo/15 + V/10, wt %.

  3. The studies were performed jointly with G.D. Motovilina, PhD (Engineering).

REFERENCES

  1. Sych, O.V., Khlusova, E.I., and Yashina, E.A., Industrial production technology of thick plates from low-carbon low-alloyed cold-resistant Arc-indexed steels in industrial conditions, Tyazh. Mashinostr., 2017, nos. 11–12, pp. 2–10.

  2. Harrison, P.L. and Hart, P.H.M., HAZ microstructure and its role in the fracture of microalloyed steels welds, The Institute of Materials Second Griffith Conf. “Micromechanisms of Fracture and Their Structural Significance,” Sheffield, UK, September 13–15, 1995, London: Inst. Mater., 1995, pp. 57–68.

  3. Kruglova, A.A., Orlov, V.V., and Sharapova, D.M., Modeling heating effects in the heat-affected zone of high-strength pipe steel K70 with double-pass submerged arc welding, Metallurgist, 2015, vol. 58, nos. 9–10, pp. 806–814.

    Article  CAS  Google Scholar 

  4. Khlusova, E.I. and Orlov, V.V., Change in the structure and properties in the heat affected zone of welded joints made from low-carbon ship-building and pipe steels, Metallurgist, 2013, vol. 56, nos. 9–10, pp. 684–699.

    Article  CAS  Google Scholar 

  5. Goli-Oglu, E.A., Influence of heat treatment after welding on the microhardness of steel joints in marine platforms, Steel Transl., 2016, vol. 46, no. 5, pp. 361–363.

    Article  Google Scholar 

  6. Pazilova, U.A., Il’in, A.V., Kruglova, A.A., Motovilina, G.D., and Khlusova, E.I., Influence of the temperature and strain rate on the structure and fracture mode of high-strength steels upon the simulation of the thermal cycle of welding and post-welding tempering, Phys. Met. Metallogr., 2015, vol. 116, no. 6, pp. 606–614.

    Article  Google Scholar 

  7. Kostin, V.A., Grigorenko, G.M., Poznyakov, V.D., et al., Influence of welding thermal cycle on structure and properties of microalloyed structural steels, Paton Weld. J., 2012, no. 12, pp. 8–14.

  8. Karkhin, V.A., Teplovye protsessy pri svarke (Thermal Processes during Welding), St. Petersburg: S.-Peterb. Politekh. Univ., 2013.

  9. Grabin, V.F. and Denisenko, A.V., Metallovedenie svarki nizko- i srednelegirovannykh stalei (Material Science of Welding of Low- and Medium-Alloyed Steels), Kiev: Naukova Dumka, 1978.

  10. Kostin, V.A., Grigorenko, G.M., Solomijchuk, T.G., et al., Microstructure of HAZ metal of joints of high-strength structural steel Weldox 1300, Paton Weld. J., 2013, no. 3, pp. 6–13.

  11. Zhao, H., Wynne, B.P., and Palmiere, E.J., Conditions for the occurrence of acicular ferrite transformation in HSLA steels, J. Mater. Sci., 2018, vol. 53, no. 5, pp. 3785–3804. doi 10.1007/s10853-017-1781-3

    Article  CAS  Google Scholar 

  12. Wan, X.L., Wei, R., and Wu, K.M., Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone, Mater. Charact., 2010, vol. 61, pp. 726–731.

    Article  CAS  Google Scholar 

  13. Lee, S.G., Lee, D.H., Sohn, S.S., Kim, W.G., Um, K.-K., Kim, K.-S., and Lee, S.H., Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low alloy (HSLA) steels, Mater. Sci. Eng., A, 2017, vol. 697, pp. 55–65.

    Article  CAS  Google Scholar 

  14. Bhadeshia, H.K.D.H. and Honeycombe, R., Steels: Microstructure and Properties, Amsterdam: Elsevier, 2006.

    Google Scholar 

  15. Komizo, Y. and Fukada, Y., CTOD properties and M–A constituent in the HAZ of C–Mn microalloyed steel, Q. J. Jpn. Weld. Soc., 1988, vol. 6, no. 1, pp. 41–46.

    Article  CAS  Google Scholar 

  16. Cao, R., Li, J., Liu, D.S., Ma, J.Y., and Chen, J.H., Micromechanism of decrease of impact toughness in coarse-grain heat-affected zone of HSLA steel with increasing welding heat input, Metall. Mater. Trans. A, 2015, vol. 46, no. 7, pp. 2999–3014.

    Article  CAS  Google Scholar 

  17. Longfei, L., Wangyue, Y., and Zuqing, S., Dynamic recrystallization of ferrite in a low-carbon steel, Metall. Mater. Trans. A, 2006, vol. 37, vol. 3, pp. 609–619.

  18. Novikov, I.I., Teoriya termicheskoi obrabotki metallov (Theory of Heat Treatment of Metals), Moscow: Metallurgiya, 1986, pp. 54.

  19. Sych, O.V., Orlov, V.V., Kruglova, A.A., and Khlusova, E.I., Changing the structure of high-strength tubular steel of strength class K70–K80 during varying high-temperature tempering modes after thermomechanical treatment, Vopr. Materialoved., 2011, no. 1 (65), pp. 89–99.

  20. Yang, B. and Xuan, F.-Z., Creep behavior of subzones in a CrMoV weldment characterized by the in situ creep test with miniature specimens, Mater. Sci. Eng., A, 2018, vol. 723, pp. 148–156.

    Article  CAS  Google Scholar 

  21. Zemzin, V.N. and Shron, R.Z., Termicheskaya obrabotka i svoistva svarnykh soedinenii (Heat Treatment and Properties of Welded Joints), Leningrad: Mashinostroenie, 1978.

  22. Orlov, A.N., Perevezentsev, V.N., and Rybin, V.V., Granitsy zeren v metallakh (Grain Boundaries in Metals), Moscow: Metallurgiya, 1980.

Download references

ACKNOWLEDGMENTS

Experimental studies were performed using the equipment of the Composition, Structure, and Properties of Structural and Functional Materials Center for Collective Use of the National Research Center Kurchatov Institute—CRISM Prometey with financial support of the Ministry of Education and Science of the Russian Federation, agreement no. 14.595.21.0004 (RFMEFI59517X0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sych.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sych, O.V., Khlusova, E.I., Pazilova, U.A. et al. Structure and Properties of the Heat-Affected Zone of Low-Alloy Cold-Resistant Steel for Arctic Application. Inorg. Mater. Appl. Res. 9, 1076–1089 (2018). https://doi.org/10.1134/S2075113318060321

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060321

Keywords:

Navigation