Skip to main content
Log in

Structure Formation of the Nitrogen-Containing Austenitic 04Kh20N6G11M2AFB Steel at Hot Deformation: Part I. Influence of Deformation Temperature and Strain Rate on the Process of Dynamic Recrystallization

  • METAL SCIENCES. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

This work determines the values of the deformation threshold necessary for the initiation and development of dynamic recrystallization within the investigated deformation temperature and strain rate for high-strength corrosion-resistant nitrogen-containing austenitic 04Kh20N6G11M2AFB steel. Analysis of diagrams shows that the deformation resistance increases with the decrease in the deformation temperature. A faint peak is observed at 1000–1200°C; it indicates the start of dynamic recrystallization. The structure of high-strength corrosion-resistant nitrogen-containing austenitic 04Kh20N6G11M2AFB steel after hot deformation with the strain rate of 0.1, 1.0, and 10 s–1 within the temperature range of 900–1200°С is studied by the EBSD analysis and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Malyshevsky, V.A., Tsukanov, V.V., Kalinin, G.Yu., and Grachev, G.V., Modern low-magnetic steels for shipbuilding, Sudostroenie, 2009, no. 3, pp. 66–68.

  2. Kalinin, G.Yu., Khar’kov, A.A., Fomina, O.V., and Golub, Yu.V., Possible wide implementation of austenitic steels doped with nitrogen, Morsk. Vestn., 2010, no. 4 (36), pp. 82–83.

  3. Potak, Ya.M., Vysokoprochnye stali (High-Strength Steels), Moscow: Metallurgiya, 1972.

  4. Sagaradze, V.V. and Uvarov, A.I., Uprochnenie i svoistva austenitnykh stalei (Strengthening and Properties of Austenitic Steels), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2013.

  5. Kostina, M.V., Bannykh, O.A., Blinov, V.M., and Dymov, A.A., New chromium corrosion-resistant steels doped by nitrogen, Materialovedenie, 2001, no. 4 (7), pp. 35–44.

  6. Gavriljuk, V.B., Nitrogen in iron and steel, ISIJ Int., 1996, vol. 36, no. 7, pp. 738–745.

    Article  CAS  Google Scholar 

  7. Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Malakhov, N.V., and Yampol’skii, V.D., Creation of prospective fundamentally new corrosion-resistant cored steels doped with nitrogen, Vopr. Materialoved., 2005, no. 2 (42), pp. 40–54.

  8. Kostina, M.V., Bannykh, O.A., and Blinov, V.M., Special features of steels alloyed with nitrogen, Met. Sci. Heat Treat., 2000, vol. 42, nos. 11–12, pp. 459–462.

    Article  CAS  Google Scholar 

  9. Bannykh, O.A., Blinov, V.M., Kostina, M.V., and Blinov, E.V., Nickel saving in a 0Kh17N12M2-type (AISI 316) steel due to nitrogen alloying, Russ. Metall. (Engl. Transl.), 2006, vol. 2006, no. 5, pp. 372–378.

  10. Gavrilyuk, V.G. and Berns, H., High-strength austenitic stainless steel, Met. Sci. Heat Treat., 2007, vol. 49, nos. 11–12, pp. 566–568.

    Article  CAS  Google Scholar 

  11. Mushnikova, S.Yu., Kostin, S.K., Sagaradze, V.V., and Kataeva, N.V., Structure, properties, and resistance to stress-corrosion cracking of a nitrogen-containing austenitic steel strengthened by thermomechanical treatment, Phys. Met. Metall., 2017, vol. 118, no. 11, pp. 1155–1166.

    Article  CAS  Google Scholar 

  12. Kodjaspirov, G.E., Sulyagin, R.V., and Karjalainen, L.P., Effect of temperature and deformation conditions on hardening and softening of nitrogen-bearing corrosion-resistant steels, Met. Sci. Heat Treat., 2005, vol. 47, nos. 11–12, pp. 502–506.

    Article  CAS  Google Scholar 

  13. Kostina, M.V., Bannykh, O.A., Blinov, V.M., and Dymov, A.A., New chromium corrosion-resistant steels doped by nitrogen, Materialovedenie, 2001, no. 4 (7), pp. 35–44.

  14. Bannykh, O.A., Blinov, V.M., and Kostina, M.V., The evolution of the structure of a nitrogenous corrosion-resistant austenitic steel 06Kh21AG10N7MFB under thermal deformation and thermal action, Vopr. Materialoved., 2006, no. 1 (45), pp. 9–22.

  15. Blinov, V.M., Poimenov, I.L., et al., Effect of hot deformation on the structure and mechanical properties of high-nitrogen non-magnetic steels, in Struktura i fiziko-mekhanicheskie svoistva nemagnitnykh stalei (The Structure and Physical-Mechanical Properties of Non-Magnetic Steels), Moscow: Nauka, 1986, pp. 30–33.

  16. Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Kalinin, G.Yu., Malakhov, N.V., Mushnikova, S.Yu., and Yampol’skii, V.D., Creation of advanced fundamentally new corrosion-resistant corpus steels doped with nitrogen, Vopr. Materialoved., 2005, no. 2 (42), pp. 40–54.

  17. Sagaradze, V.V., Uvarov, A.I., Pecherkina, N.L., Kalinin, G.Yu., and Mushnikova, S.Yu., Effect of strengthening treatment on the structure and mechanical properties of hardened nitrogen-bearing austenitic steel 04Kh20N6G11AM2BF, Met. Sci. Heat Treat., 2008, vol. 50, nos. 9–10, pp. 489–494.

    Article  CAS  Google Scholar 

  18. Gorynin, I.V., Malyshevsky, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Bannykh, O.A., Blinov, V.M., and Kostina, M.V., Corrosion-resistant high-strength nitrogenous steels, Vopr. Materialoved., 2009, no. 3 (59), pp. 7–16.

  19. Mushnikova, S.Yu., Sagaradze, V.V., Filippov, Yu.I., Kataeva, N.V., Zavalishin, V.A., Malyshevsky, V.A., Kalinin, G.Yu., and Kostin, S.K., Comparative analysis of corrosion cracking of austenitic steels with different contents of nitrogen in chloride- and hydrogen-containing media, Phys. Met. Metall., 2015, vol. 116, no. 6, pp. 626–635.

    Article  Google Scholar 

  20. Kodzhaspirov, G.E., Rudskoi, A.I., and Rybin, V.V., Fizicheskie osnovy i resursosberegayushchie tekhnologii izgotovleniya izdelii plasticheskim deformiravaniem (Physical Principles and Resource-Saving Technologies of Plastic Deformation), St. Petersburg: Nauka, 2006.

  21. Bernshtein, M.L., Struktura deformirovannykh metallov (The Structure of Deformed Metals), Moscow: Metallurgiya, 1977.

  22. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: Mosk. Inst. Stali Splavov, 2005.

  23. Recrystallization of Metallic Materials, Haeßner, F., Ed., Stuttgart: Dr. Riederer Verlag, 1978.

    Google Scholar 

  24. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Amsterdam: Elsevier, 2004.

    Google Scholar 

  25. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., et al., Current issues in recrystallization: a review, Mater. Sci. Eng., A, 1997, vol. 238, pp. 219–274.

    Article  Google Scholar 

  26. Kondrat’ev, N.S. and Trusov, P.V., Mechanisms of formation of recrystallization nuclei in metals under thermomechanical treatment, Vestn. Permsk. Nats. Issled. Politekh. Univ., Mekh., 2016, no. 4, pp. 151–174.

  27. Evangelista, E., McQueen, H.J., and Ryan, N.D., Hot strength, dynamic recovery and dynamic recrystallization of 317 type stainless steel, Metall. Sci. Technol., 1987, vol. 5, no. 2, pp. 50–58.

    CAS  Google Scholar 

  28. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., and Jonas, J.J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    Article  CAS  Google Scholar 

  29. Bernshtein, M.L., Zaimovskii, V.A., and Kaputkina, L.M., Termomekhanicheskaya obrabotka stali (Thermomechanical Treatment of Steel), Moscow: Metallurgiya, 1983.

  30. Ponge, D. and Gottstein, G., Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta Mater., 1998, vol. 46, no. 1, pp. 69–80.

    Article  CAS  Google Scholar 

  31. Dehghan-Manshadi, A., Barnett, M.R., and Hodgson, P.D., Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mater. Sci. Eng., A, 2008, vol. 485, pp. 664–672.

    Article  CAS  Google Scholar 

  32. Dehghan-Manshadi, A., Barnett, M.R., and Hodgson, P.D., Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization, Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359–1370.

    Article  CAS  Google Scholar 

  33. Poirier, J.-P., Plasticité à Haute Température des Solides Cristallins, Paris: Eyrolles, 1976.

    Google Scholar 

  34. Hoseini Asli, A. and Zarei-Hanzaki, A. Dynamic recrystallization behavior of a Fe–Cr–Ni super-austenitic stainless steel, J. Mater. Sci. Technol., 2009, vol. 25, no. 5, pp. 603–606.

    Google Scholar 

  35. Rybin, V.V., Bol’shie plasticheskie deformatsii i razru-shenie metallov (Large Plastic Deformations and Fracture of Metals), Moscow: Metallurgiya, 1986.

Download references

ACKNOWLEDGMENTS

Electron microscope investigations were performed at the Center for Collective Use of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (“Structure,” no. АААА-А18-118020190116-6).

Experimental studies were performed by using the equipment of the Center for Collective Use Composition, Structure, and Properties of Structural and Functional Materials of the National Research Center Kurchatov Institute—CRISM Prometey under the financial support of the Ministry of Education within the framework of agreement 14.595.21.0004, unique identifier RFMEFI59517X0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Fomina.

Additional information

Translated by E. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomina, O.V., Vikhareva, T.V., Sagaradze, V.V. et al. Structure Formation of the Nitrogen-Containing Austenitic 04Kh20N6G11M2AFB Steel at Hot Deformation: Part I. Influence of Deformation Temperature and Strain Rate on the Process of Dynamic Recrystallization. Inorg. Mater. Appl. Res. 9, 1060–1069 (2018). https://doi.org/10.1134/S2075113318060278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060278

Keywords:

Navigation