Skip to main content
Log in

Structural Features of Niobium Carbide Disperse Particles in the Structure of Heat-Resistant Alloys Based on Fe–25Cr–35Ni System

  • METAL SCIENCES. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—The structure of hardening niobium carbide particles in a cast heat-resistant alloy based on the Fe–Cr–Ni–C system modified with Nb and Ti is studied by means of optical and electron microscopy. It is established that the particles of niobium carbide in the structure of the cast alloy can be considered as multiphase polycrystalline clusters that are heterogeneous in chemical composition and crystalline structure. Possible reasons for a complicated polycrystalline structure of niobium carbide particles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Garbiak, M., Jasiński, W., and Piekarski, B., Materials for reformer furnace tubes. History of evolution, Arch. Foundry Eng., 2011, vol. 11, suppl. 2, pp. 47–52.

    CAS  Google Scholar 

  2. Bonaccorsi, L., Guglielmino, E., Pino, E., Servetto, C., and Sili, A., Damage analysis in Fe–Cr–Ni centrifugally cast alloy tubes for reforming furnaces, Eng. Failure Anal., 2014, vol. 36, pp. 65–74.

    Article  CAS  Google Scholar 

  3. Ilman, M.N. and Kusmono, Analysis of material degradation and life assessment of 25Cr–38Ni–Mo–Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant, Eng. Failure Anal., 2014, vol. 42, pp. 100–108.

    Article  CAS  Google Scholar 

  4. Tawancy, H. M., Ul-Hamid, A., Mohammed, A.I., and Abbas, N.M., Effect of materials selection and design on the performance of an engineering product An example from petrochemical industry, Mater. Des., 2007, vol. 28, no. 2, pp. 686–703. doi 10.1016/j.matdes.2005.07.003

    Article  CAS  Google Scholar 

  5. Kaya, A.A., Krauklis, P., and Young, D.J., Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack, Mater. Charct., 2002, vol. 49, no. 1, pp. 11–21.

    Article  CAS  Google Scholar 

  6. Kaya, A.A., Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations, Mater. Charact., 2002, vol. 49, no. 1, pp. 23–34.

    Article  CAS  Google Scholar 

  7. De Almeida, L.H., Ribeiro, A.F., and Le May, I., Microstructural characterization of modified 25Cr–35Ni centrifugally cast steel furnace tubes, Mater. Charact., 2003, vol. 49, no. 3, pp. 219–229.

    Article  CAS  Google Scholar 

  8. Kenik, E.A., Maziasz, P.J., Swindeman, R.W., Cervenka, J., and May, D., Structure and phase stability in cast modified-HP austenite after long-term ageing, Scr. Mater., 2003, vol. 49, no. 2, pp. 117–122.

    Article  CAS  Google Scholar 

  9. Rudskoy, A.I., Oryshchenko, A.S., Kondrat’ev, S.Yu., Anastasiadi, G.P., Fuks, M.D., and Petrov, S.N., Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2, Met. Sci. Heat Treat., 2013, vol. 55, nos. 3–4, pp. 209–215. doi 10.1007/s11041-013-9607-7

    Article  CAS  Google Scholar 

  10. Rudskoi, A.I., Anastasiadi, G.P., Kondrat’ev, S.Yu., Oryshchenko, A.S., and Fuks, M.D., Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C–26Cr–33Ni–2Si–2Nb superalloy, Phys. Met. Metallogr., 2014, vol. 115, no. 1, pp. 1–11.

    Article  Google Scholar 

  11. Sustaita-Torres, I.A., Haro-Rodríguez, S., Guerrero-Mata, M.P., De La Garza, M., Valdés, E., Deschaux-Beaume, F., and Colás, R., Aging of cast 35Cr–45Ni heat resistant alloy, Mater. Chem. Phys., 2012, vol. 133, pp. 1018–1023.

    Article  CAS  Google Scholar 

  12. Monobe, L.S. and Schőn, C.G., Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the as cast and aged states, J. Mater. Res. Technol., 2013, vol. 2, no. 2, pp. 195–201.

    Article  CAS  Google Scholar 

  13. Wang, W.Z., Xuan, F.Z., Wang, Z.D., and Liu, C.J., Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy, Mater. Des., 2011, vol. 32, pp. 4010–4016.

    Article  CAS  Google Scholar 

  14. Borjali, S., Allahkaram, S.R., and Khosravi, H., Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition, Mater. Des., 2012, vol. 34, pp. 65–73.

    Article  CAS  Google Scholar 

  15. Rudskoy, A.I., Oryshchenko, A.S., Kondrat’ev, S.Yu., Anastasiadi, G.P., and Fuks, M.D., Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1, Met. Sci. Heat Treat., 2014, vol. 56, nos. 1–2, pp. 3–8. doi 10.1007/s11041-014-9692-2

    Article  CAS  Google Scholar 

  16. Rudskoy, A.I., Kondrat’ev, S.Yu., Anastasiadi, G.P., Oryshchenko, A.S., and Fuks, M.D., Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 2, Met. Sci. Heat Treat., 2014, vol. 56, nos. 3–4, pp. 124–130. doi 10.1007/s11041-014-9717-x

    Article  CAS  Google Scholar 

  17. Rudskoy, A.I., Kondrat’ev, S.Yu., Anastasiadi, G.P., Oryshchenko, A.S., Fuks, M.D., and Petrov, S.N., Transformation of the structure of refractory alloy 0.45C–26Cr–33Ni–2Si–2Nb during a long-term high-temperature hold, Met. Sci. Heat Treat., 2014, vol. 55, nos. 9–10, pp. 517–525. doi 10.1007/s11041-014-9664-6

    Article  CAS  Google Scholar 

  18. Piekarski, B., Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni–Cr cast austenitic steels, Mater. Charact., 2001, vol. 47, pp. 181–186.

    Article  CAS  Google Scholar 

  19. De Almeida Soares, G.D., De Almeida, L.H., Da Silveira, T.L., and Le May, I., Niobium additions in HP heat-resistant cast stainless steels, Mater. Charact., 1992, vol. 29, no. 3, pp. 387–396.

    Article  Google Scholar 

  20. Buchanan, K.G. and Kral, M.V., Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes, Metall. Mater. Trans. A, 2012, vol. 43, no. 6, pp. 1760–1769. doi 10.1007/s11661-011-1025-0

    Article  CAS  Google Scholar 

  21. Buchanan, K.G., Kral, M.V., and Bishop, C.M., Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys, Metall. Mater. Trans. A, 2014, vol. 45, no. 8, pp. 3373–3385. doi 10.1007/s11661-014-2285-2

    Article  CAS  Google Scholar 

  22. Nunes, F.C., De Almeida, L.H., Dille, J., Delplancke, J.-L., and Le May, I., Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels, Mater. Charact., 2007, vol. 58, pp. 132–142.

    Article  CAS  Google Scholar 

  23. Kondrat’ev, S.Yu., Ptashnik, A.V., Anastasiadi, G.P., and Petrov, S.N., Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy, Met. Sci. Heat Treat., 2015, vol. 57, nos. 7–8, pp. 402–409. doi 10.1007/s11041-015-9896-0

    Article  CAS  Google Scholar 

  24. Yan, J., Gao, Y., Yang, F., Yao, C., Ye, Z., Yi, D., and Ma, S., Effect of tungsten on the microstructure evolution and mechanical properties of yttrium modified HP40Nb alloy, Mater. Sci. Eng., A, 2011, vol. 529, pp. 361–369.

    Article  CAS  Google Scholar 

  25. Sourmail, T., Precipitates in creep resistant austenitic stainless steels, Mater. Sci. Technol., 2001, vol. 17, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  26. Rybin, V.V., Rubtsov, A.S., and Nesterova, E.V., The method of single reflexes (OR) and its application in electron microscopy analysis of dispersed phases, Zavod. Lab., 1982, no. 5, pp. 16–21.

  27. Rodionova, I.G., Zaitsev, A.I., Shaposhnikov, N.G., Chirkina, I.N., Pokrovsky, A.M., Nemtinov, A.A., Mishnev, P.A., and Kuznetsov, V.V., Effect of chemical composition and production parameters on nanostructured component formation and a set of properties for high-strength low-alloy structural steels, Metallurgist, 2010, vol. 54, nos. 5–6, pp. 343–352. doi 10.1007/s11015-010-9301-6

    Article  CAS  Google Scholar 

  28. Mao, Z., Chen, W., Seidman, D.N., and Wolverton, C., First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys, Acta Mater., 2011, vol. 59, no. 8, pp. 3012–3023.

    Article  CAS  Google Scholar 

  29. Monachon, C., Krug, M.E., Seidman, D.N., and Dunand, D.C., Chemistry and structure of core/double-shell nanoscale precipitates in Al–6.5Li–0.07Sc–0.02Yb (at %), Acta Mater., 2011, vol. 59, no. 9, pp. 3398–3409.

    Article  CAS  Google Scholar 

  30. Formenti, A., Eliasson, A., Mitchell, A., and Fredriksson, H., Solidification sequence and carbide precipitation in Ni-base superalloys IN718, IN625, and IN939, High Temp. Mater. Process., 2005, vol. 24, no. 4, pp. 239–258. doi 10.1515/HTMP.2005.24.4.239

    CAS  Google Scholar 

  31. Nunes, F.C., Dille, J., Delplancke, J.-L., and De Almeida, L.H., Yttrium addition to heat-resistant cast stainless steel, Scr. Mater., 2006, vol. 54, no. 9, pp. 1553–1556.

    Article  CAS  Google Scholar 

  32. Konno, T.J., Miura, E., Tanaka, A., and Hanada, Sh., A TEM study on the semicoherent precipitates in a Nb–19%Mo alloy, Acta Mater., 2005, vol. 53, no. 6, pp. 1783–1789.

    Article  CAS  Google Scholar 

  33. Billingham, J., Bell, P.S., and Lewis, M.H., Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaCl structure. I. Electron diffraction studies of short-range ordered compounds, Acta Crystallogr. A, 1972, vol. 28, no. 6, pp. 602–606. doi 10.1107/S0567739472001524

    Article  CAS  Google Scholar 

  34. Landesman, J.P., Christensen, A.N., De Novion, C.H., Lorenzelli, N., and Convert, P., Order-disorder transition and structure of the ordered vacancy compound Nb6C5: powder neutron diffraction studies, J. Phys. C: Solid State Phys., 1985, vol. 18, no. 4, pp. 809–824.

    Article  CAS  Google Scholar 

  35. Kesri, R. and Hamar-Thibault, S., Structures ordonnees a longue distance dans les carbures mc dans les fonts, Acta Metall., 1988, vol. 36, no. 1, pp. 149–166.

    Article  CAS  Google Scholar 

  36. Gusev, A.I. and Rempel, A.A., Order-disorder phase transition channel in niobium carbide, Phys. Status Solidi A, 1986, vol. 93, no. 1, pp. 71–80.

    Article  CAS  Google Scholar 

  37. Steel Castings Handbook, Suppl. 9: High Alloy Data Sheets, Heat Series, Crystal Lake, IL: Steel Founders’ Soc. Am., 2004.

  38. Ibanez, R.A.P., De Almeida Soares, G.D., De Almeida, L.H., and Le May, I., Effects of Si content on the microstructure of modified-HP austenitic steels, Mater. Charact., 1993, vol. 30, pp. 243–249.

    Article  CAS  Google Scholar 

  39. Caballero, F.G., Imizcoz, P., Lopez, V., Alvarez, L.F., and Garcia de Andres, C., Use of titanium and zirconium in centrifugally cast heat resistant steel, Mater. Sci. Technol., 2007, vol. 23, no. 5, pp. 528–534.

    Article  CAS  Google Scholar 

  40. Brizes, W.F., Cadoff, L.H., and Tobin, J.M., Carbon diffusion in the carbides of niobium, J. Nucl. Mater., 1966, vol. 20, no. 1, pp. 57–67.

    Article  CAS  Google Scholar 

  41. Talis, A. and Kraposhin, V., Finite noncrystallographic groups, 11-vertex triangulated clusters, and polymorphic transformations in metals, Acta Cryst. A, 2014, vol. 70, pp. 616–625.

    Article  CAS  Google Scholar 

  42. Kondrat’ev, S.Yu., Kraposhin, V.S., Anastasiadi, G.P., and Talis, A.L., Experimental observation and crystallographic description of M7C3 carbide transformation in Fe–Cr–Ni–C HP type alloy, Acta Mater., 2015, vol. 100, pp. 275–281.

    Article  CAS  Google Scholar 

  43. Kraposhin, V.S., Talis, A.L., Demina, E.D., and Zaitsev, A.I., Crystal geometry mechanism of intergrowth of spinel and manganese sulfide into a complex nonmetallic inclusion, Met. Sci. Heat Treat., 2015, vol. 57, nos. 7–8, pp. 371–378.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kondratiev.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratiev, S.Y., Sviatysheva, E.V. & Petrov, S.N. Structural Features of Niobium Carbide Disperse Particles in the Structure of Heat-Resistant Alloys Based on Fe–25Cr–35Ni System. Inorg. Mater. Appl. Res. 9, 1035–1043 (2018). https://doi.org/10.1134/S2075113318060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060126

Keywords:

Navigation