Skip to main content
Log in

Concentration Redistribution of Alloying Elements in Pseudo-Alpha-Titanium Alloy under Elastoplastic Deformation

  • METAL SCIENCES. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper studies redistribution of alloying elements (Al, V, Mo) in the pseudo-alpha-titanium structure under graded stretching until destruction of the sample. Local sections of the titanium structure and of the fracture surface have been scanned by electron microscopy and X-ray microanalysis. The change in the chemical and phase composition of the alloy has been compared with the initial state stimulated by deformation impact. The structural-phase state of the material under high plastic strains is metastable, fixed by the system of deformation defects of the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Henceforth, regions А and В.

REFERENCES

  1. Ivanova, L.A., Travin, V.V., Benemanskaya, G.V., Makarenko, I.V., and Petrov, V.N., Evolution of the structure of a titanium alloy under elastoplastic loading of a sample, Vopr. Materialoved., 2016, no. 1, pp. 11–21.

  2. Farber, V.N., Contribution of diffusion processes to structure formation in intense cold plastic deformation of metals, Met. Sci. Heat Treat., 2002, no. 8, pp. 3–9.

  3. Skotnikova, M.A. and Ushkov, S.S., Choice of the final thermal treatment of two-phase hot-deformed semi-finished products from titanium alloys, Progr. Mater. Tekhnol., 1999, no. 3, pp. 91–98.

  4. Skotnikova, M.A., Structural-concentration heterogeneity of solid solutions, in Sinergetika, struktura i svoistva materialov, samoorganizuyushchiesya tekhnologii (Synergetics, Structure and Properties of Materials, Self-Organizing Technologies), Tr. Inst. Metall. im. A.A. Baikova, Moscow, 1996, pp. 203–204.

  5. Sagaradze, V.V., Diffusion transformations in steels due to cold deformation, Met. Sci. Heat Treat., 2008, vol. 50, nos. 9–10, pp. 422–429.

    Article  CAS  Google Scholar 

  6. Koloskov, V.N., Deryagin, A.I., Vil’danova, A.D., and Gapontsev, V.A., Concentration and structural transformations in austenitic chromium-nickel alloys based on iron under severe plastic deformation, Fiz. Mezomekh., 2006, vol. 9, no. 5, pp. 97–105.

    CAS  Google Scholar 

  7. Umanskii, Ya.S. and Skakov, Yu.A., Fizika metallov. Atomnoe stroenie metallov i splavov (Physics of Metals. Atomic Structure of Metals and Alloys), Moscow: Atomizdat, 1978.

    Google Scholar 

  8. Bokshtein, S.Z., Diffuziya i struktura metallov (Diffusion and Structure of Metals), Moscow: Metallurgiya, 1973.

    Google Scholar 

  9. Teitel’, E.I., Metlov, L.S., Gunderov, D.V., and Korznikov, A.V., On the structural and phase transformations in solids induced by severe plastic deformation, Phys. Met. Metallogr., 2012, vol. 113, no. 12, pp. 1162–1168.

    Article  Google Scholar 

  10. Ivanov, Yu.F., Kornet, E.V., and Gromov, V.E., Structural-phase transformations of hardened structural steel deformed by uniaxial compression, in Strukturno-fazovye sostoyaniya perspektivnykh metallicheskikh materialov (Structural-Phase States of Advanced Metal Materials), Gromov, V.E., Ed., Novokuznetsk: NPK, 2009, pp. 284–311.

    Google Scholar 

  11. Vasil’ev, L.S. and Korzinkov, A.V., Nonequilibrium cooperative phenomena and processes under intensive plastic deformation of metals and alloys. Part 1. Deformation-induced structural transformations, Deform. Razrushenie Mater., 2014, no. 3, pp. 2–11.

  12. Gapontsev, V.A. and Koloskov, V.M., Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation, Met. Sci. Heat Treat., 2007, vol. 49, nos. 11–12, pp. 503–515.

    Article  CAS  Google Scholar 

  13. Rybin, V.V., Structural kinetic aspects of the physics of evolution of plastic deformation, Sov. Phys. J., 1991, vol. 34, no. 3, pp. 186–5198.

    Article  Google Scholar 

  14. Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva. Spravochnik (Composition, Structure, and Properties of Titanium Alloys: Handbook), Moscow: Vseross. Inst. Legk. Splavov, Mosk. Aviats. Tekhnol. Inst., 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Ivanova or G. V. Benemanskaya.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, L.A., Benemanskaya, G.V. & Travin, V.V. Concentration Redistribution of Alloying Elements in Pseudo-Alpha-Titanium Alloy under Elastoplastic Deformation. Inorg. Mater. Appl. Res. 9, 1020–1028 (2018). https://doi.org/10.1134/S2075113318060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060102

Keywords:

Navigation