Skip to main content
Log in

Prospects of Application of Self-Healing Materials and Technologies Based on Them

  • Physicochemical Principles of Creating Materials and Technologies
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Self-healing materials are of increasing interest for science and industry. However, such materials and technologies based on them are not widely implemented at the large-scale industrial level. There are reports on single successful implementations of such technologies; the concept of artificial self-healing of nonbiological materials is mostly actualized in prototypes for self-healing materials and systems. Self-restoring of the initial characteristics of materials is the most successfully realized in polymers and compositions based on them, and polymer coatings are the most applicable and commercially demanded self-healing materials. In this article, the basic mechanisms of self-healing of the initial characteristics in materials of different types are briefly presented and the technologies based on them are considered. The data on self-healing materials of different chemical nature (polymers, cements, ceramics, metals, and composite materials) are analyzed. The physical and chemical principles of providing the effect of self-restoring of the initial characteristics are highlighted, and the prospects of practical implementation of self-healing materials and technologies on their basis are discussed. The sources of information used were overviews on self-healing materials of different types, patents, and scientific articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wool, R.P., Self-healing materials: a review, Soft Matter, 2008, vol. 4, pp. 400–418.

    Article  CAS  Google Scholar 

  2. Bekas, D.G., Tsirka, K., Baltzis, D., and Paipetis, A.S., Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques, Composites, Part B, 2016, vol. 87, pp. 92–119.

    Article  CAS  Google Scholar 

  3. Kessler, M.R., Self-healing: a new paradigm in materials design, Proc. Inst. Mech. Eng., Part G, 2007, vol. 221, pp. 479–495.

    Article  CAS  Google Scholar 

  4. Ying, Y., Xiaochu, D., and Marek, W., Urban chemical and physical aspects of self-healing materials, Prog. Polym. Sci., 2015, vol. 49–50, pp. 34–59.

    Google Scholar 

  5. Scheiner, M., Dickens, T.J., and Okoli, O., Progress towards self-healing polymers for composite structural applications, Polymer, 2016, vol. 83, pp. 260–282.

    Article  CAS  Google Scholar 

  6. Li, V.C. and Yang, E., Self-healing in concrete materials, in Self-Healing Materials, van der Zwaag, S., Ed., Dordrecht: Springer-Verlag, 2007, pp. 161–193.

    Google Scholar 

  7. De Rooij, M., van Tittelboom, K., De Belie, N., and Schlangen, E., Self-Healing Phenomena in Cement-Based Materials, Dordrecht: Springer-Verlag, 2013.

    Book  Google Scholar 

  8. Wu, M., Johannesson, B., and Geiker, M., A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material, Constr. Build. Mater., 2012, vol. 28, pp. 571–583.

    Article  Google Scholar 

  9. Yuan, Y.C., Yin, T., Rong, M.Z., and Zhang, M.Q., Self-healing in polymers and polymer composites. Concepts, realization and outlook: A review, eXPRESS Polym. Lett., 2008, vol. 2, no. 4, pp. 238–250.

    CAS  Google Scholar 

  10. Urdl, K., Kandelbauer, A., Kern, W., and Müller, U., Self-healing of densely cross-linked thermoset polymers— a critical review, Prog. Org. Coat., 2017, vol. 104, pp. 232–249.

    Article  CAS  Google Scholar 

  11. Zhu, D.Y., Rong, M.Z., and Zhang, M.Q., Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation, Prog. Polym. Sci., 2015, vols. 49–50, pp. 175–220.

    Google Scholar 

  12. Ying, Y. and Marek, W., Urban self-healing polymeric materials, Chem. Soc. Rev., 2013, vol. 42, no. 17, pp. 7446–7467.

    Article  CAS  Google Scholar 

  13. Thakur, V.K. and Michael, R.K., Self-healing polymer nanocomposite materials: a review, Polymer, 2015, vol. 69, pp. 369–383.

    Article  CAS  Google Scholar 

  14. Lee, H.I., Vahedi, V., and Pasbakhsh, P., Self-healing polymer composites: prospects, challenges, and applications, Polym. Rev., 2016, vol. 56, pp. 225–261.

    Article  CAS  Google Scholar 

  15. Zwaag, S., Grande, A.M., and Post, W., Review of current strategies to induce self-healing behavior in fibrereinforced polymer based composites, Mater. Sci. Technol., 2014, vol. 30, pp. 1633–1641.

    Article  CAS  Google Scholar 

  16. Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., et al., Self-healing polymers and composites, Annu. Rev. Mater. Res., 2010, vol. 40, pp. 1790–1211.

    Article  CAS  Google Scholar 

  17. Zhua, D.Y., Rong, M.Z., and Zhang, M.Q., Self-healing polymeric materials based on microencapsulatedhealing agents: from design to preparation, Prog. Polym. Sci., 2015, vols. 49–50, pp. 175–220.

    Google Scholar 

  18. Akarachkin, S.A., Self-recovering materials, Proc. XVIII Int. Conf. Reshetnev Readings, November 11–14, 2014, Loginov, Yu.Yu., Ed., Krasnoyarsk: Sib. Gos. Aerokosm. Univ., 2014, part 1, pp. 339–340.

    Google Scholar 

  19. Kotov, A.N., Novye naukoemkie tekhnologii v tekhnike. Entsiklopediya. Tom 30. Nanotekhnologii—novyi uroven’ resheniya problem pri sozdanii perspektivnykh izdelii RKT (New High Technologies in Engineering: Encyclopedia, Vol. 30: Nanotechnologies: A New Level of Problem Solving in the Development of Advanced Products for Rocket-Space Technics), Moscow: Ensitekh, 2011.

    Google Scholar 

  20. Wu, D.Y., Meure, S., and Solomon, D., Self-healing polymeric materials: a review of recent developments, Prog. Polym. Sci., 2008, vol. 33, no. 5, pp. 479–522.

    Article  CAS  Google Scholar 

  21. Jud, K., Kausch, H.H., and Williams, J.G., Fracture mechanics studies of crack healing and welding of polymers, J. Mater. Sci., 1981, vol. 16, pp. 204–210.

    Article  CAS  Google Scholar 

  22. Kim, Y.H. and Wool, R.P., A theory of healing at a polymer-polymer interface, Macromolecules, 1983, vol. 16, no. 7, pp. 1115–1120.

    Article  CAS  Google Scholar 

  23. Toohey, K.S., Sottos, N.R., Lewis, J.A., et al., Selfhealing materials with microvascular networks, Nat. Mater., 2007, vol. 6, pp. 581–585.

    Article  CAS  PubMed  Google Scholar 

  24. Williams, H.R., Trask, R.S., Knights, A.C., et al., Biomimetic reliability strategies for self-healing vascular networks in engineering materials, J. R. Soc., Interface, 2008, vol. 5, no. 24, pp. 735–747.

    Article  CAS  Google Scholar 

  25. Hansen, C.J., Wu, W., Toohey, K.S., et al., Self-healing materials with interpenetrating microvascular networks, Adv. Mater., 2009, vol. 21, no. 41, pp. 4143–4147.

    Article  CAS  Google Scholar 

  26. Fetter, E., US Patent 1427277, 1921.

    Google Scholar 

  27. Bateman, S., Meure, S., et al., US Patent 20120165432, 2012.

    Google Scholar 

  28. Blaiszik B.J., Moll J.L., et al., US Patent 8703285, 2014.

    Google Scholar 

  29. White, S.R., Sottos, N.R., Geubelle, P.H., et al., US Patent 6 518 330, 2003.

    Google Scholar 

  30. White, S.R., et al., US Patent 6 518 330, 2003.

    Google Scholar 

  31. Klein, D.J., US Patent 20100174 041, 2010.

    Google Scholar 

  32. Sanders, M.L., et al., US Patent 5790304, 1998.

    Google Scholar 

  33. Parrish, C.F., US Patent 7285306, 2007.

    Google Scholar 

  34. Mather, P. and Pan, W., US Patent 20150343749, 2015.

    Google Scholar 

  35. Zaykoski, J.A. and Talmy, I.G., US Patent 6632762, 2003.

    Google Scholar 

  36. Merle, P., Guntzburger, Y., Haddad, E., et al., US Patent 0036568, 2009.

    Google Scholar 

  37. Jolley, S.T., Williams, M.K., Gibson, T.L., et al., WO Patent 174325, 2012.

    Google Scholar 

  38. The 2015 International Conference on Self-Healing Materials (ICSHM2015). http://icshm2015.pratt. duke.edu/.

  39. Hillewaere, X.K.D. and Du Prez, F.E., Fifteen chemistries for autonomous external self-healing polymers and composites, Prog. Polym. Sci., 2015, vols. 49–50, pp. 121–153.

    Google Scholar 

  40. Wool, R.P. and O’Connor, K.M., A theory of crack healing in polymers, J. Appl. Phys., 1981, vol. 52, pp. 5953–5963.

    Article  CAS  Google Scholar 

  41. Sonoda, Y., Solid-state [2+2] photodimerization and photopolymerization of α,ω-diarylpolyene monomers: Effective utilization of noncovalent intermolecular interactions in crystals, Molecules, 2011, vol. 16, pp. 119–148.

    Article  CAS  Google Scholar 

  42. Takeda, K., Tanahashi, M., and Unno, H., Self-repairing mechanism of plastics, Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 435–444.

    Article  CAS  Google Scholar 

  43. Plaisted, T.A. and Nemat-Nasser, S., Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer, Acta Mater., 2007, vol. 55, pp. 5684–5696.

    Article  CAS  Google Scholar 

  44. Keller, M.K., White, S.R., and Sottos, N.R., A selfhealing poly(dimethyl siloxane) elastomer, Adv. Funct. Mater., 2007, vol. 17, pp. 2399–2404.

    Article  CAS  Google Scholar 

  45. Zhang, W., Duchet, J., and Gerard, J.F., Self-healable interfaces based on thermoreversible Dielse–Alder reactions in carbon fiber reinforced composites, J. Colloid Interface Sci., 2014, vol. 430, pp. 61–68.

    Article  CAS  PubMed  Google Scholar 

  46. Amamoto, Y., Otsuka, H., Takahara, A., et al., Selfhealing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light, Adv Mater., 2012, vol. 24, no. 29, pp. 3975–3980.

    Article  CAS  PubMed  Google Scholar 

  47. Roy, N., Buhler, E., and Lehn, J.-M., Double dynamic self-healing polymers: Supramolecular and covalent dynamic polymers based on the bisiminocarbohydrazide motif, Polym. Int., 2014, vol. 63, no. 8, pp. 1400–1405.

    Article  CAS  Google Scholar 

  48. Yoon, J.A., Kamada, J., Koynov, K., et al., Self-healing polymer films based on thioledisulfide exchange reactions and self-healing kinetics measured using atomic force microscopy, Macromolecules, 2011, vol. 45, no. 1, pp. 142–149.

    Article  CAS  Google Scholar 

  49. Hentschel, J., Kushner, A.M., Ziller, J., et al., Selfhealing supramolecular block copolymers, Angew. Chem., 2012, vol. 124, no. 42, pp. 10713–10717.

    Article  Google Scholar 

  50. Bond, I.P., Trask, R.S., and Williams, H.R., Self-healing fiber-reinforced polymer composites, MRS Bull., 2008, vol. 33, pp. 770–774.

    Article  CAS  Google Scholar 

  51. Sanada, K., Itaya, N., and Shindo, Y., Self-healing of interfacial debonding in fiber-reinforced polymers and effect of microstructure on strength recovery, Open Mech. Eng. J., 2008, vol. 2, pp. 97–103.

    Article  CAS  Google Scholar 

  52. Koralagundi, M.A.K., Strong, S., El Gammal, T., et al., Development of novel self-healing polymer composites for use in wind turbine blades, J. Energy Resour. Technol., 2015, vol. 137, no. 5, pp. 51–202.

    Google Scholar 

  53. Williams, G., Trask, R.S., and Bond, I.P., A self-healing carbon fibre reinforced polymer for aerospace applications, Composites, Part A, 2007, vol. 38, pp. 1525–1532.

    Article  CAS  Google Scholar 

  54. Song, G., Ma, N., and Li, H.N., Application of shape memory alloys in civil structures, Eng. Struct., 2006, vol. 28, pp. 1266–1274.

    Article  Google Scholar 

  55. Shelyakov, A.V., Sitnikov, N.N., Menushenkov, A.P., Rizakhanov, R.N., et al., Forming the two-way shape memory effect in TiNiCu alloy via melt spinning, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, pp. 1134–1140.

    Article  CAS  Google Scholar 

  56. Kirkby, E.L., Rule, J.D., Michaud, V.J., et al., Embedded shape-memory alloy wires for improved performance of self-healing polymers, Adv. Funct. Mater., 2008, vol. 18, no. 15, pp. 2253–2260.

    Article  CAS  Google Scholar 

  57. Sundeev, R.V., Glezer, A.M., and Shalimova, A.V., Structural and phase transitions in the amorphous and nanocrystalline Ti50Ni25Cu25 alloys upon high-pressure torsion, Mater. Lett., 2014, vol. 133, pp. 32–34.

    Article  CAS  Google Scholar 

  58. Ratna, D. and Karger-Kocsis, J., Recent advances in shape memory polymers and composites: a review, J. Mater. Sci., 2008, vol. 43, pp. 254–269.

    Article  CAS  Google Scholar 

  59. Xu, W. and Li, G., Constitutive modeling of shape memory polymer based self-healing syntactic foam, Int. J. Solids Struct., 2010, vol. 47, no. 9, pp. 1306–1316.

    Article  CAS  Google Scholar 

  60. Gardner, G.L., Manufacturing encapsulated products, Chem. Eng. Progr., 1966, vol. 62, pp. 87–91.

    Google Scholar 

  61. Zako, M. and Takano, N., Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP, J. Intell. Mater. Syst. Struct., 1999, vol. 10, pp. 836–841.

    Article  Google Scholar 

  62. Yin, T., Rong, M.Z., Zhang, M.Q., et al., Self-healing epoxy composites—preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent, Compos. Sci. Technol., 2007, vol. 67, pp. 201–212.

    Article  CAS  Google Scholar 

  63. Yin, T., Zhou, L., Rong, M.Z., et al., Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent, Smart Mater. Struct., 2008, vol. 17, pp. 015019/1–015019/8.

    Article  CAS  Google Scholar 

  64. Haase, M.F., Grigoriev, D.O., Mohwald, H., et al., Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings, Adv. Mater., 2012, vol. 24, no. 18, pp. 2429–2435.

    Article  CAS  PubMed  Google Scholar 

  65. Haiyan, L., Rongguo, W., and Wenbo, L., Preparation and self-healing performance of epoxy composites with microcapsules and tungsten (VI) chloride catalyst, J. Reinf. Plast. Compos., 2012, vol. 31, no. 13, pp. 924–932.

    Article  CAS  Google Scholar 

  66. Kirkby, E.L., et al., Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires, Polymer, 2009, vol. 50, no. 23, pp. 5533–5538

    Article  CAS  Google Scholar 

  67. Jackson, A.C., Bartelt, J.A., and Braun, P.V., Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix, Adv. Funct. Mater., 2011, vol. 21, no. 24, pp. 4705–4711.

    Article  CAS  Google Scholar 

  68. Kling, S. and Czigany, T., Damage detection and selfrepair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling, Compos. Sci. Technol., 2014, vol. 99, pp. 82–88.

    Article  CAS  Google Scholar 

  69. Hamilton, A.R., Sottos, N.R., and White, S.R., Selfhealing of internal damage in synthetic vascular materials, Adv. Mater., 2010, vol. 22, no. 45, pp. 5159–5163.

    Article  CAS  PubMed  Google Scholar 

  70. Esser-Kahn, A.P., Thakre, P.R., Dong, H., et al., Three-dimensional microvascular fiber-reinforced composites, Adv. Mater., 2011, vol. 23, no. 32, pp. 3654–3658.

    Article  CAS  PubMed  Google Scholar 

  71. Peterson, A.M., Kotthapalli, H., Rahmathullah, M.A.M., et al., Investigation of interpenetrating polymer networks for self-healing applications, Compos. Sci. Technol., 2012, vol. 72, no. 2, pp. 330–336.

    Article  CAS  Google Scholar 

  72. Coppola, A.M., Thakre, P.R., Sottos, N.R., et al., Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites, Composites, Part A, 2014, vol. 59, pp. 9–17.

    Article  CAS  Google Scholar 

  73. Mehta, P.K., Sulfate attack on concrete—a critical review, in Materials Science of Concrete, Skalny, J., Ed., Westerville, Oh: Am. Ceram. Soc., 1993, pp. 105–130.

    Google Scholar 

  74. Tittelboom, K.V. and Belie, N.D., Self-healing in cementitious materials—a review, Materials, 2013, vol. 6, pp. 2182–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hearn, N. and Morley, C.T., Self-healing, autogenous healing and continued hydration: What is the difference, Mater. Struct., 1998, vol. 31, pp. 563–567.

    Article  CAS  Google Scholar 

  76. Yang, Y.Z., Lepech, M.D., Yang, E.H., et al., Autogenous healing of engineered cementitious composites under wet-dry cycles, Cem. Concr. Res., 2007, vol. 39, pp. 382–390.

    Article  CAS  Google Scholar 

  77. Tittelboom, K.V., Belie, N.D., Muynck, W.D., et al., Use of bacteria to repair cracks in concrete, Cem. Concr. Res., 2010, vol. 40, pp. 157–166.

    Article  CAS  Google Scholar 

  78. Ahn, T.H. and Kishi, T., Crack self-healing behavior of cementitious composites incorporating various mineral admixtures, J. Adv. Concr. Technol., 2010, vol. 8, no. 2, pp. 171–186.

    Article  CAS  Google Scholar 

  79. Aldea, C., Song, W., Popovics, J.S., et al., Extent of healing of cracked normal strength concrete, J. Mater. Civil. Eng., 2000, vol. 12, pp. 92–96.

    Article  Google Scholar 

  80. Jonkers, H.M., Thijssen, A., Muyzer, G., et al., Application of bacteria as self-healing agent for the development of sustainable concrete, Ecol. Eng., 2010, vol. 36, no. 2, pp. 230–235.

    Article  Google Scholar 

  81. Yoshioka, S. and Nakao, W., Methodology for evaluating self-healing agent of structural ceramics, J. Intell. Mater. Syst. Struct., 2015, vol. 26, no. 11, pp. 1395–1403.

    Article  CAS  Google Scholar 

  82. Ono, M., Nakao, W., Takahashi, K., et al., A new methodology to guarantee the structural integrity of Al2O3/SiC composite using crack healing and a proof test, Fatigue Fract. Eng. Mater. Struct., 2007, vol. 30, no. 7, pp. 599–607.

    Article  CAS  Google Scholar 

  83. Yang, H.J., Pei, Y.T., Rao, J.C., et al., Self-healing performance of Ti2AlC ceramic, J. Mater. Chem., 2012, vol. 22, no. 17, pp. 8304–8313.

    Article  CAS  Google Scholar 

  84. Song, G.M., Pei, Y.T., Sloof, W.G., et al., Oxidationinduced crack healing in Ti3AlC2 ceramics, Scr. Mater., 2008, vol. 58, no. 1, pp. 13–16.

    Article  CAS  Google Scholar 

  85. Farle, A., Kwarkernaak, C., van der Zwaag, S., et al., A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 37–45.

    Article  CAS  Google Scholar 

  86. Nakao, W. and Abe, S., Enhancement of the self-healing ability in oxidation induced self-healing ceramic by modifying the healing agent, Smart Mater. Struct., 2012, vol. 21, no. 2, pp. 1–7.

    Article  CAS  Google Scholar 

  87. Ando, K., Kim, B.-S., Chu, M.-C., et al., Crack-healing and mechanical behavior of Al2O3/Sic composites at elevated temperature, Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, no. 7, pp. 533–541.

    Article  CAS  Google Scholar 

  88. Zhang, S., et al., Self-healing of creep damage by gold precipitation in iron alloys, Adv. Eng. Mater., 2015, vol. 17, no. 5, pp. 1–6.

    Article  CAS  Google Scholar 

  89. Shinya, N., Kyono, J., and Laha, K., Self-healing effect of boron nitride precipitation on creep cavitation in austenitic stainless steel, J. Intell. Mater. Syst. Struct., 2006, vol. 17, pp. 1127–1133.

    Article  CAS  Google Scholar 

  90. Laha, K., Kyono, J., and Shinya, N., An advanced creep cavitation resistance Cu-containing 18Cr–12Ni–Nb austenitic stainless steel, Scr. Mater., 2007, vol. 56, no. 10, pp. 915–918.

    Article  CAS  Google Scholar 

  91. He, S.M., et al., Thermally activated precipitation at deformation-induced defects in Fe–Cu and Fe–Cu–B–N alloys studied by positron annihilation spectroscopy, Phys. Rev., 2010, vol. 81, no. 9, pp. 94–103.

    Google Scholar 

  92. Bondarenko, G.G., Radiation-stimulated processes in near-surface layers of metal alloys, Metally, 1993, no. 1, pp. 150–161.

    Google Scholar 

  93. Zhang, S., Kohibrecher, J., Tichelaar, F.D., et al., Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering, Acta Mater., 2013, vol. 61, no. 18, pp. 7009–7019.

    Article  CAS  Google Scholar 

  94. Bondarenko, G.G. and Udris, Ya.Ya., Influence of high heat flux loading and irradiation on some promising candidate materials for the diverter structure, Fusion Eng. Des., 1998, vols. 39–40, pp. 419–426.

    Google Scholar 

  95. Williams, H.R., Trask, R.S., and Bond, I.P., Self-healing sandwich panels: restoration of compressive strength after impact, Compos. Sci. Technol., 2008, vols. 15–16, pp. 3171–3177.

    Google Scholar 

  96. Zavada, S.R., McHardy, N.R., et al., Rapid, punctureinitiated healing via oxygen-mediated polymerization, ACS Macro Lett., 2015, vol. 4, pp. 819–824.

    Article  CAS  Google Scholar 

  97. Williams, H.R., Trask, R.S., and Bond, I.P., Self-healing composite sandwich structures, Smart Mater. Struct., 2007, vol. 16, pp. 1198–1207.

    Article  Google Scholar 

  98. Bailey, P.B.S., Hayes, S.A., and Lafferty, A.D., Novel interlayers for self-healing sandwich structures, Second Int. Conf. on Self-Healing Materials, Chicago, Illinois USA, New York: Springer-Verlag, 2009, pp. 21–27.

    Google Scholar 

  99. Aissa, B., Tagziria, K., and Haddad, E., The self-healing capability of carbon fibre composite structures subjected to hypervelocity impacts simulating orbital space debris, ISRN Nanomater., 2012, vol. 2012, art. ID 351205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sitnikov.

Additional information

Original Russian Text © N.N. Sitnikov, I.A. Khabibullina, V.I. Mashchenko, R.N. Rizakhanov, 2018, published in Perspektivnye Materialy, 2018, No. 2, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikov, N.N., Khabibullina, I.A., Mashchenko, V.I. et al. Prospects of Application of Self-Healing Materials and Technologies Based on Them. Inorg. Mater. Appl. Res. 9, 785–793 (2018). https://doi.org/10.1134/S207511331805026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511331805026X

Keywords

Navigation