Skip to main content
Log in

Manufacturing Transparent Conducting Films Based on Directly Exfoliated Graphene Particles via Langmuir–Blodgett Technique

  • Electronic Engineering Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Transparent conducting films based on graphene particles are obtained via ultrasonic-assisted liquid-phase exfoliation of natural graphite. For the first time, the Langmuir–Blodgett technique is reported to be utilized for the deposition of transparent conducting thin films based on directly exfoliated graphene on dielectric substrates (glass and lithium niobate). It is shown that centrifugation of graphene suspensions prior to the film deposition enables the formation of conducting coatings with high transparency (higher than 90%). A number of film parameters (sheet conductance, transmission coefficient in the optical domain) are investigated; the achieved level of properties (the sheet resistance of 143 Ω/sq at the optical transmission coefficient of 90% and the weak dependence of absorption on the wavelength) makes these films an attractive material for transparent electrodes in photovoltaic devices, light emitting diodes, and advanced sensor technologies. The samples of graphene-based films deposited on a transparent piezoelectric substrate (lithium niobate) showed themselves as candidates for application as a part of primary transducers for electronic devices and sensing technologies as a possible substitute for ceramic materials based on indium-tin oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López-Naranjo, E.J., González-Ortiz, L.J., Apátiga, L.M., Rivera-Muñoz, E.M., and Manzano-Ramírez, A., Transparent electrodes: A review of the use of carbon-based nanomaterials, J. Nanomater., 2016, vol. 2016, p. 4928365.

    Article  CAS  Google Scholar 

  2. Ferrari, A.C., Bonaccorso, F., Fal’ko, V., et al., Science and technology roadmap for graphene, related twodimensional crystals, and hybrid systems, Nanoscale, 2015, vol. 7, pp. 4598–4810.

    Article  CAS  PubMed  Google Scholar 

  3. Exarhos, G.J. and Zhou, X.D., Discovery-based design of transparent conducting oxide films, Thin Solid Films, 2007, vol. 515, pp. 7025–7052.

    Article  CAS  Google Scholar 

  4. Cao, W., Li, J., Chen, H., and Xue, J., Transparent electrodes for organic optoelectronic devices: a review, J. Photon. Energy, 2014, vol. 4, p. 040990.

    Article  CAS  Google Scholar 

  5. Kulkarni, G.U., Kiruthika, S., Gupta, R., and Rao, K.D.M., Towards low cost materials and methods for transparent electrodes, Curr. Opin. Chem. Eng., 2015, vol. 8, pp. 60–68.

    Article  Google Scholar 

  6. Luo, M., Liu, Y., Huang, W., Qiao, W., Zhou, Y., Ye, Y., and Chen, L.-S., Towards flexible transparent electrodes based on carbon and metallic materials, Micromachines, 2017, vol. 8, no. 1, p. 12.

    Article  PubMed Central  Google Scholar 

  7. Liu, J., Yi, Y., Zhou, Y., and Cai, H., Highly stretchable and flexible graphene/ITO hybrid transparent electrode, Nanoscale Res. Lett., 2016, vol. 11, pp. 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar, A. and Zhou, C., The race to replace tin-doped indium oxide: Which material will win? ACS Nano, 2010, vol. 4, no. 1, pp. 11–42.

    Article  CAS  PubMed  Google Scholar 

  9. Hecht, D.S., Hu, L., and Irvin, G., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, vol. 23, pp. 1482–1513.

    Article  CAS  PubMed  Google Scholar 

  10. Bright, C.I. Review of transparent conductive oxides (TCO), in 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters, Mattox, D.M. and Mattox, V.H., Eds., Albuquerque: Soc. Vacuum Coaters, 2007, pp. 38–45.

    Google Scholar 

  11. Li, H., Wang, N., and Liu, X., Optical and electrical properties of vanadium doped indium oxide thin films, Opt. Express, 2008, vol. 16, no. 1, pp. 194–199.

    Article  CAS  PubMed  Google Scholar 

  12. Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photon., 2012, vol. 6, pp. 809–817.

    Article  CAS  Google Scholar 

  13. Leem, D.-S., Edwards, A., Faist, M., Nelson, J., Bradley, D.D.C., and de Mello, J.C., Efficient organic solar cells with solution-processed silver nanowire electrodes, Adv. Mater., 2011, vol. 23, pp. 4371–4375.

    Article  CAS  PubMed  Google Scholar 

  14. Xu, Y. and Liu, J., Graphene as transparent electrodes: fabrication and new emerging applications, Small, 2016, vol. 12, no. 11, pp. 1400–1419.

    Article  CAS  PubMed  Google Scholar 

  15. Hasan, T., Scardaci, V., Tan, P.H., Bonaccorso, F., Rozhin, A.G., Sun, Z., and Ferrari, A.C., Nanotube and graphene polymer composites for photonics and optoelectronics, in Molecular-and Nano-Tubes, Hayden, O. and Nielsch, K., Eds., New York: Springer-Verlag, 2011, pp. 279–354. ISBN 978-1-4419-9442-4

    Google Scholar 

  16. Cai, W., Zhu, Y., Li, X., Piner, R.D., and Ruoff, R.S., Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Appl. Phys. Lett., 2009, vol. 95, no. 12, p. 123115.

    Article  CAS  Google Scholar 

  17. Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V., and Kong, J., Doped graphene electrodes for organic solar cells, Nanotechnology, 2010, vol. 21, no. 50, p. 505204.

    Article  CAS  PubMed  Google Scholar 

  18. Sandana, V.E., Rogers, D.J., Teherani, F.H., Bove, P., and Razeghi, M., Graphene versus oxides for transparent electrode applications, Proc. SPIE, 2013, vol. 8626, p. 862603.

    Article  CAS  Google Scholar 

  19. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., and Ruoff, R.S., Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 2009, vol. 9, no. 12, pp. 4359–4363.

    Article  CAS  PubMed  Google Scholar 

  20. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, vol. 9, no. 1, pp. 30–33.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y.-Z., Medina, H., Tsai, H.-W., Wang, Y.-C., Yen, Y.-T., Manikandan, A., and Chueh, Y.-L., Low temperature growth of graphene on glass by carbonenclosed chemical vapor deposition process and its application as transparent electrode, Chem. Mater., 2015, vol. 27, no. 5, pp. 1646–1655.

    Article  CAS  Google Scholar 

  22. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 2009, vol. 324, pp. 1312–1314.

    Article  CAS  PubMed  Google Scholar 

  23. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., and Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 2010, vol. 5, pp. 574–578.

    Article  CAS  PubMed  Google Scholar 

  24. Celestin, M., Krishnan, S., Bhansali, S., Stefanakos, E., and Goswami, D.Y., A review of selfassembled monolayers as potential THz frequency tunnel diodes, Nano Res., 2014, vol. 7, no. 5, pp. 589–625.

    Article  CAS  Google Scholar 

  25. Chen, J., Guo, Y., Huang, L., Xue, Y., Geng, D., Liu, H., Wu, B., Yu, G., Hu, W., Liu, Y., and Zhu, D., Controllable fabrication of ultrathin free-standing graphene films, Philos. Trans. R. Soc., A, 2014, vol. 372, p. 20130017.

    Article  CAS  Google Scholar 

  26. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., and Chhowalla, M., Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater., 2009, vol. 19, pp. 2577–2583.

    Article  CAS  Google Scholar 

  27. Liu, Y., Gao, L., Sun, J., Wang, Y., and Zhang, J., Stable Nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology, 2009, vol. 20, p. 465605.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., and Peumans, P., Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 2010, vol. 4, no. 1, pp. 43–48.

    Article  CAS  PubMed  Google Scholar 

  29. Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A.N., and Li, L.-J., High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano, 2011, vol. 5, no. 3, pp. 2332–2339.

    Article  CAS  PubMed  Google Scholar 

  30. De, S., King, P.J., Lotya, M., O’Neill, A., Doherty, E.M., Hernandez, Y., Duesberg, G.S., and Coleman, J.N., Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free grapheme dispersions, Small, 2010, vol. 6, no. 3, pp. 458–464.

    Article  CAS  PubMed  Google Scholar 

  31. Eda, G., Fanchini, G., and Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, vol. 3, pp. 270–274.

    Article  CAS  PubMed  Google Scholar 

  32. Zasadzinski, J.A., Viswanathan, R., Madsen, L., Garnaes, J., and Schwartz, D.K., Langmuir–Blodgett films, Science, 1994, vol. 263, no. 5154, pp. 1726–1733.

    Article  CAS  PubMed  Google Scholar 

  33. Oliveira, O.N., Jr., Langmuir–Blodgett films-properties and possible applications, Braz. J. Phys., 1992, vol. 22, no. 2, pp. 60–69.

    CAS  Google Scholar 

  34. Whitesides, G.M., Kriebel, J.K., and Love, J.C., Molecular engineering of surfaces using self-assembled monolayers, Sci. Progr., 2005, vol. 88, no. 1, pp. 17–48.

    Article  PubMed  Google Scholar 

  35. Zheng, L., Wucher, A., and Winograd, N., Chemically alternating Langmuir–Blodgett thin films as a model for molecular depth profiling by mass spectrometry, J. Am. Soc. Mass Spectrom., 2008, vol. 19, pp. 96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bjørnholm, T., Hassenkam, T., and Reitzel, N., Supramolecular organization of highly conducting organic thin films by the Langmuir–Blodgett technique, J. Mater. Chem., 1999, vol. 9, pp. 1975–1990.

    Article  Google Scholar 

  37. Cea, P., Ballesteros, L.M., and Martín, S., Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics, Nanofabrication, 2014, vol. 1, pp. 96–117.

    Article  Google Scholar 

  38. Malik, S. and Tripathi, C.C., Thin film deposition by Langmuir–Blodgett technique for gas sensing applications, J. Surf. Eng. Mater. Adv. Technol., 2013, vol. 3, pp. 235–241.

    CAS  Google Scholar 

  39. Tao, A.R., Huang, J., and Yang, P., Langmuir–Blodgettry of nanocrystals and nanowires, Acc. Chem. Res., 2008, vol. 41, no. 12, pp. 1662–1673.

    Article  CAS  PubMed  Google Scholar 

  40. Sukhodolov, N.G., Ivanov, N.S., and Podol’skaya, E.P., New materials obtained by Langmuir–Blodgett technique and their application in nanotechnologies, Nauch. Priborostr., 2013, vol. 23, no. 1, pp. 86–105.

    CAS  Google Scholar 

  41. Ciesielski, A. and Samori, P., Graphene via sonication assisted liquid-phase exfoliation. Review article, Chem. Soc. Rev., 2014, vol. 43, pp. 381–398.

    Article  CAS  PubMed  Google Scholar 

  42. Coleman, J.N., Liquid-phase exfoliation of nanotubes and graphene, Adv. Funct. Mater., 2009, vol. 19, no. 23, pp. 3680–3695.

    Article  CAS  Google Scholar 

  43. Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., and Coleman, J.N., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 2009, vol. 131, no. 10, pp. 3611–3620.

    Article  CAS  PubMed  Google Scholar 

  44. De, S. and Coleman, J.N., Are there fundamental limitations on the sheet resistance and transmittance of thin grapheme films? ACS Nano, 2010, vol. 4, no. 5, pp. 2713–2720.

    Article  CAS  PubMed  Google Scholar 

  45. Samoilov, V.M., Danilov, E.A., Nikolaeva, A.V., Yerpuleva, G.A., Trofimova, N.N., Abramchuk, S.S., and Ponkratov, K.V., Formation of graphene aqueous suspensions using fluorinated surfactant-assisted ultrasonication of pristine graphite, Carbon, 2015, vol. 84, pp. 38–46.

    Article  CAS  Google Scholar 

  46. Nikolaeva, A.V., Samoilov, V.M., Danilov, E.A., Mayakova, D.V., Trofimova, N.N., and Abramchuk, S.S., Efficiency of surfactants and organic additives in preparation of aqueous suspensions of graphene from natural graphite affected by ultrasound, Perspekt. Mater., 2015, vol. 2, pp. 44–56.

    Google Scholar 

  47. Samoilov, V.M., Nikolaeva, A.V., Timoshchuk, E.I., Rochev V.Ya., Lyapunov A.Ya., Balaklienko, Yu.M., and Petrov, A.B., The use of laser diffraction to determine the particle size of finely dispersed powders of artificial graphite, Prikl. Anal. Khimi., 2012, vol. 3, no. 2, pp. 28–35.

    Google Scholar 

  48. Maragó, O.M., Bonaccorso, F., Saija, R., Privitera, G., Gucciardi, P.G., Iati, M.A., Calogero, G., Jones, P.H., Borghese, F., Denti, P., Nicolosi, V., and Ferrari, A.C., Brownian motion of graphene, ACS Nano, 2010, vol. 4, no. 12, pp. 7515–7523.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu, Y., James, D.K., and Tour, J.M., New routes to graphene, graphene oxide and their related applications, Adv. Mater., 2012, vol. 24, no. 36, pp. 4924–4955.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, J., Liang, M., Fang, Y., Qiu, T., Zhang, J., and Zhi, L., Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater., 2012, vol. 24, no. 21, pp. 2874–2878.

    Article  CAS  PubMed  Google Scholar 

  51. Girard-Egrot, A.P. and Blum, L.J., Langmuir–Blodgett technique for synthesis of biomimetic lipid membranes, Fund. Biomed. Technol., 2007, vol. 1, pp. 23–74.

    Article  Google Scholar 

  52. Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F., and Huang, J., Graphene oxide as surfactant sheets, Pure Appl. Chem., 2011, vol. 83, no. 1, pp. 95–110.

    Article  CAS  Google Scholar 

  53. Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., and Dai, H., Highly conducting graphene sheets and Langmuir–Blodgett films, Nature Nanotechnol., 2008, vol. 3, pp. 538–542.

    Article  CAS  Google Scholar 

  54. Gengler, R.Y.N., Veligura, A., Enotiadis, A., Diamanti, E.K., Gournis, D., Jozsa, C., van Wees, B.J., and Rudolf, P., Large-yield preparation of high-electronic quality graphene by a Langmuir–Schaefer approach, Small, 2010, vol. 6, no. 1, pp. 35–39.

    Article  CAS  PubMed  Google Scholar 

  55. Wajid, A.S., Das, S., Irin, F., Ahmed, H.S.T., Shelburne, J.L., Parviz, D., Fullerton, R.J., Jankowski, A.F., Hedden, R.C., and Green, M.J., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon, 2012, vol. 50, no. 2, pp. 526–534.

    Article  CAS  Google Scholar 

  56. Zheng, Q., Shi, L., and Yang, J., Langmuir–Blodgett assembly of ultra-large graphene oxide films for transparent electrodes, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2504–2511.

    Article  CAS  Google Scholar 

  57. Zheng, Q., Ip, W.H., Lin, X., Yousefi, N., Yeung, K.K., Li, Z., and Kim, J.-K., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir–Blodgett assembly, ACS Nano, 2011, vol. 5, no. 7, pp. 6039–6051.

    Article  CAS  PubMed  Google Scholar 

  58. Kuzmenko, A.B., van Heumen, E., Carbone, F., and van der Marel, D., Universal optical conductance of graphite, Phys. Rev. Lett., 2008, vol. 100, p. 117401.

    Article  CAS  Google Scholar 

  59. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., Fine structure constant defines visual transparency of graphene, Science, 2008, vol. 320, p. 1308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Danilov.

Additional information

Original Russian Text © E.A. Danilov, V.M. Samoilov, V.S. Dmitrieva, A.V. Nikolaeva, D.V. Ponomareva, E.I. Timoshchuk, 2018, published in Perspektivnye Materialy, 2018, No. 1, pp. 17–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, E.A., Samoilov, V.M., Dmitrieva, V.S. et al. Manufacturing Transparent Conducting Films Based on Directly Exfoliated Graphene Particles via Langmuir–Blodgett Technique. Inorg. Mater. Appl. Res. 9, 794–802 (2018). https://doi.org/10.1134/S2075113318050064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318050064

Keywords

Navigation