Advertisement

Inorganic Materials: Applied Research

, Volume 7, Issue 6, pp 930–941 | Cite as

Initial data and criteria for the reasoning procedure for the safe operation of pipelines and housing of equipment of FBR under conditions of sodium leakage via through crack and its combustion

  • R. M. Ramazanov
  • G. P. Karzov
  • B. Z. Margolin
  • V. A. Petrov
  • O. Yu. Vilensky
Structural–Technological Strenghts and Working Capacity of Materials
  • 16 Downloads

Abstract

Criteria of the safety assessment procedure are described with regard to pipelines of the FBR secondary loop. The short-term and long-term properties of strength and ductility, fracture toughness, creep rate, and creep crack growth rate within the temperature range of 550–800°C for steel 08Cr16Ni11Mo3 are given. The most probable scenario of sodium combustion is proposed. Results of the testing procedures in a straight section of the pipeline DN 900 with the sodium leakage via through cracks and its combustion on the external surface are presented. A diagram of the admissible states of the pipeline concerning the discharge of sodium is constructed.

Keywords

fast breeder reactor (FBR) equipment safe operation through crack channel sodium discharge evaluation criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rieth, M., Falkenstein, A., Graf, P., Heger, S., Jäntsch, U., Klimiankou, M., Materna-Morris, E., and Zimmermann, H., Creep of the austenitic steel AISI 316 L(N): experiments and models, Forschungszent. Karlsruhe Helmholtz-Gemeinschaft Wiss. Ber., 2004, no. 7065.Google Scholar
  2. 2.
    ASME Section III: Rules for Construction of Nuclear Facility Components Division 1 Subsection NH Class 1 Components in Elevated Temperature Service, New York: Am. Soc. Mech. Eng., 2004.Google Scholar
  3. 3.
    Gulenko, A.G., Buchatskii, A.A., Margolin, B.Z., Kashtanov, A.D., and Fedorova, V.A., Analysis of growth rate of crack in austenitic steels with prolonged static loading in creep conditions, Vopr. Materialoved., 2012, no. 2 (70), pp. 120–137.Google Scholar
  4. 4.
    Javanroodi, F.D. and Nikbin, K.M., The fracture mechanics concept of creep and creep/fatigue crack growth in life assessment, Int. J. Eng. Sci., 2006, vol. 17, nos. 3–4, pp. 1–7.Google Scholar
  5. 5.
    Mils, M., Crack resistance of stainless steels used as materials for the pipeline of the primary circuit and the reactor vessel, Teor. Osnovy Inzh. Raschetov, 1988, no. 3, pp. 181–191.Google Scholar
  6. 6.
    Xuan, F.-Z., Tu, S.-T., and Wang, Z., Safety assessment method for defective structures in creep regime, Struct. Integr. Mater. Aging, 2003, pp. 119–128.Google Scholar
  7. 7.
    Dean, D.W., Patel, R.D., Klenk, A., and Mueller, F., Comparison of procedures for the assessment of creep cracking initiation. http://www.ommi.co.uk/etd/eccc/advancedcreep/HIDA-4%20paper%20Dean%20etal.pdf.Google Scholar
  8. 8.
    Horak, J.A., et al., Review of effects of long-term aging on the mechanical properties and microstructures of types 304 and 316 stainless steel, Proc. Int. Conf. on Nuclear Power Plant Aging, Variability Factor, and Reliability Analysis, San Diego, CA, 1983, pp. 301–313.Google Scholar
  9. 9.
    Mikeev, A.K., Protivopozharnaya zashchita AES (Fire Protection of the Nuclear Power Plants), Moscow: Energoatomizdat, 1990.Google Scholar
  10. 10.
    Kuznetsov, I.A. and Poplavskii, V.M., Bezopasnost’ AES s reaktorami na bystrykh neitronakh (Safety of NPP with Reactors with Fast Neutrons Reactors), Rachkov, V.I., Ed., Moscow: IzdAT, 2012.Google Scholar
  11. 11.
    Mater. Vses. tekh. soveshchaniya “Voprosy bezopasnosti AES i zadachi nauchnykh issledovanii,” Polyarnye Zori, iyun’ 1977 (Mater. All-Union Tech. Meeting “Safety of NPP and the Objectives of Scientific Research,” Polyarnye Zori, June, 1977), Moscow: Atmoizdat, 1979.Google Scholar
  12. 12.
    Chechetkin, Yu.V., Kobzar’, I.G., and Poznyak, G.I., Removal of impurities from the combustion products, At. Energiya, 1973, vol. 35, no. 5, pp. 401–404.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. M. Ramazanov
    • 1
  • G. P. Karzov
    • 1
  • B. Z. Margolin
    • 1
  • V. A. Petrov
    • 1
  • O. Yu. Vilensky
    • 2
  1. 1.Central Research Institute of Structural Materials PrometeySt. PetersburgRussia
  2. 2.OKBM AfrikantovNizhny NovgorodRussia

Personalised recommendations