Advertisement

Inorganic Materials: Applied Research

, Volume 7, Issue 5, pp 648–657 | Cite as

MD simulation of primary radiation damage in metals with internal structure

  • A. V. Korchuganov
  • V. M. Chernov
  • K. P. Zolnikov
  • D. S. Kryzhevich
  • S. G. Psakhie
Physico-Chemical Principles of Materials Development

Abstract

A review on simulation of the primary radiation damage (PRD) and formation of radiation defects by atomic displacement cascades is conducted. Results of the simulation by the molecular dynamics method of the atomic displacement cascades and peculiarities of their interaction with the defects of the internal crystal structure (point defect, pores, dislocations, grain boundaries (GBs), and free surfaces) are given. It is shown that the defects exert a significant impact on the evolution of the atomic displacement cascades and formation of the PRD in metals.

Keywords

metals defects of the crystal structure primary radiation damage molecular dynamics atomic displacement cascades 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanov, L.I. and Platov, Yu.M., Radiatsionnaya fizika metallov i ee prilozheniya (Radiation Physics of Metals and Its Application), Moscow: Nauka, 2002.Google Scholar
  2. 2.
    Was, G.S., Fundamentals of Radiation Materials Science, Berlin: Springer-Verlag, 2007.Google Scholar
  3. 3.
    Korchuganov, A.V., Zolnikov, K.P., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., Generation of shock waves in iron under irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 352, pp. 39–42.CrossRefGoogle Scholar
  4. 4.
    Zolnikov, K.P., Korchuganov, A.V., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., Structural changes in elastically stressed crystallites under irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 352, pp. 43–46.CrossRefGoogle Scholar
  5. 5.
    Korchuganov, A.V., Zolnikov, K.P., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., MD simulation of plastic deformation nucleation in stressed crystallites under irradiation, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2015, vol. 38, pp. 42–48.Google Scholar
  6. 6.
    Zolnikov, K.P., Korchuganov, A.V., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., Impact waves in metal crystals under irradiation effect, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2015, vol. 38, pp. 68–74.Google Scholar
  7. 7.
    Kryzhevich, D.S., Korchuganov, A.V., Zolnikov, K.P., and Psakhie, S.G., Effect of boundaries on formation of radiation defects in iron, Izv. Vyssh. Uchebn. Zaved., Fiz., 2013, vol. 56, nos. 12/2, pp. 143–146.Google Scholar
  8. 8.
    Psakhie, S.G., Zolnikov, K.P., Kryzhevich, D.S., Zheleznyakov, A.V., and Chernov, V.M., Atomic collision cascades in vanadium crystallites with grain boundaries, Phys. Mesomech., 2009, vol. 12, nos. 1–2, pp. 20–28.CrossRefGoogle Scholar
  9. 9.
    Psakhie, S.G., Zolnikov, K.P., Kryzhevich, D.S., Zheleznyakov, A.V., and Chernov, V.M., Evolution of atomic collision cascades in vanadium crystal with internal structure, Crystallogr. Rep., 2009, vol. 54, no. 6, pp. 1002–1010.CrossRefGoogle Scholar
  10. 10.
    Starikov, S.V., Insepov, Z., Rest, J., Kuksin, A.Yu., Norman, G.E., Stegailov, V.V., and Yanilkin, A.V, Radiation-induced damage and evolution of defects in Mo, Phys. Rev. B, 2011, vol. 84, p. 104109.CrossRefGoogle Scholar
  11. 11.
    Tikhonchev, M., Svetukhin, V., and Gaganidze, E., MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy, J. Nucl. Mater., 2013, vol. 442, pp. S618–S623.CrossRefGoogle Scholar
  12. 12.
    Muralev, A.B., Tikhonchev, M.Yu., and Svetukhin, V.V., Simulation of atomic impacts cascades in a-iron with symmetrically inclined inter-grain boundary, Nauchn. Dokl. Vyssh. Shk., Fiz.-Mat. Nauki, 2013, no. 1, pp. 144–158.Google Scholar
  13. 13.
    Stoller, R.E., Primary Radiation Damage Formation. Comprehensive Nuclear Materials, Konings, R.J., Ed., Oxford: Elsevier, 2012, pp. 293–332.Google Scholar
  14. 14.
    Wurstera, S. and Pippan, R., Nanostructured metals under irradiation, Scr. Mater., 2009, vol. 60, pp. 1083–1087.CrossRefGoogle Scholar
  15. 15.
    Malerba, L., Molecular dynamics simulation of displacement cascades in a-Fe: a critical review, J. Nucl. Mater., 2006, vol. 351, pp. 28–38.CrossRefGoogle Scholar
  16. 16.
    Bacon, D.J. and Osetsky, Yu.N., Multiscale modeling of radiation damage in metals: From defect generation to material properties, Mater. Sci. Eng. A, 2004, vol. 365, pp. 46–56.CrossRefGoogle Scholar
  17. 17.
    Blokhin, A.I., Demin, N.A., Manokhin, V.N., Sipachev, I.V., Blokhin, D.A., and Chernov, V.M., Software package ACDAM for investigation of nuclear physical properties of materials in conditions of longterm neutron irradiation, Inorg. Mater.: Appl. Res., 2010, vol. 1, no. 4, pp. 311–319.CrossRefGoogle Scholar
  18. 18.
    Norgett, M.J., Robinson, M.T., and Torrens, I.M., Vacancy cluster and plate vacancy collection energy in metals, Nucl. Eng. Des., 1975, vol. 33, pp. 50–54.CrossRefGoogle Scholar
  19. 19.
    Sivak, A.B., Chernov, V.M., Romanov, V.A., and Sivak, P.A., Kinetic Monte-Carlo simulation of selfpoint defect diffusion in dislocation elastic fields in bcc iron and vanadium, J. Nucl. Mater., 2011, vol. 417, pp. 1067–1070.CrossRefGoogle Scholar
  20. 20.
    Sivak, A.B., Romanov, V.A., and Chernov, V.M., Diffusion of self-point defects in body-centered cubic iron crystal containing dislocations, Crystallogr. Rep., 2010, vol. 55, no. 1, pp. 97–108.CrossRefGoogle Scholar
  21. 21.
    Caturla, M.J., Soneda, N., Diaz de la Rubia, T., and Fluss, M., Kinetic Monte Carlo simulations applied to irradiated materials: the effect of cascade damage in defect nucleation and growth, J. Nucl. Mater., 2006, vol. 351, pp. 78–87.CrossRefGoogle Scholar
  22. 22.
    Devyatko, Yu.N., Plyasov, A.A., and Khomutov, O.V., Mechanism for thermal conductivity in energeric displacement cascades, Philos. Mag., 2013, vol. 93, no. 18, pp. 2384–2400.CrossRefGoogle Scholar
  23. 23.
    Romanov, V.A., Sivak, A.B., and Chernov, V.M., Crystallographic, energetic and kinetic properties of self-point defects and clusters in BCC iron, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2006, vol. 1 (66), pp. 129–232.Google Scholar
  24. 24.
    Terentyev, D.A., et al., Displacement cascades in Fe–Cr: a molecular dynamics study, J. Nucl. Mater., 2006, vol. 349, pp. 119–132.CrossRefGoogle Scholar
  25. 25.
    Malerba, L., Marinica, M.C., Anento, N., Björkas, C., Nguyen, H., et al., Comparison of empirical interatomic potentials for iron applied to radiation damage studies, J. Nucl. Mater., 2010, vol. 406, pp. 19–38.CrossRefGoogle Scholar
  26. 26.
    Daw, M.S. and Baskes, M.I., Embedded atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 1984, vol. 29, no. 12, pp. 6443–6453.Google Scholar
  27. 27.
    Finnis, M.W. and Sinclair, J.E., A simple N-body potential for transition metals, Philos. Mag. A, 1984, vol. 50, no. 1, pp. 45–55.CrossRefGoogle Scholar
  28. 28.
    Bacon, D.J., Calder, A.F., Gao, F., Kapinos, V.G., and Wooding, S.J., Computer simulation of defect production by displacement cascades in metals, Nucl. Instrum. Methods Phys. Res., Sect. B, 1995, vol. 102, pp. 37–46.CrossRefGoogle Scholar
  29. 29.
    Jung, P., Average atomic-displacement energies of cubic metals, Phys. Rev. B, 1981, vol. 23, pp. 664–670.CrossRefGoogle Scholar
  30. 30.
    Averback, R.S., Benedek, R., and Merkle, K.L., Ionirradiation studies of the damage function of copper and silver, Phys. Rev. B, 1987, vol. 18, pp. 4156–4171.CrossRefGoogle Scholar
  31. 31.
    Antoshchenkova, E. Luneville, L., Simeone, D., Stoller, R.E., and Hayoun, M., Fragmentation of displacement cascades into subcascades: a molecular dynamics study, J. Nucl. Mater., 2015, vol. 458, pp. 168–175.CrossRefGoogle Scholar
  32. 32.
    Stoller, R.E. and Calder, A.F., Statistical analysis of a library of molecular dynamics cascade simulations in iron at 100 K, J. Nucl. Mater., 2000, vols. 283–287, pp. 746–752.CrossRefGoogle Scholar
  33. 33.
    Stoller, R.E., The role of cascade energy and temperature in primary defect formation in iron, J. Nucl. Mater., 2000, vol. 276, pp. 22–32.CrossRefGoogle Scholar
  34. 34.
    Wooding, S.J., Bacon, D.J., and Phythian, W.J., A computer simulation study of displacement cascades in a-titanium, Philos. Mag. A, 1995, vol. 72, pp. 1261–1279.CrossRefGoogle Scholar
  35. 35.
    Calder, A.F., Bacon, D.J., Barashev, A.V., and Osetsky, Yu.N., On the origin of large interstitial clusters in displacement cascades, Philos. Mag., 2010, vol. 90, pp. 863–884.CrossRefGoogle Scholar
  36. 36.
    Gao, F., Bacon, D.J., Osetskiy, Yu.N., Flewitt, P.E.J., and Lewis, T.A., Properties and evolution of sessile interstitial clusters produced by displacement cascades in a-iron, J. Nucl. Mater., 2000, vol. 276, pp. 213–220.CrossRefGoogle Scholar
  37. 37.
    Gao, F., Bacon, D.J., Flewitt, P.E.J., and Lewis, T.A., A molecular dynamics study of temperature effects on defect production by displacement cascades in a-iron, J. Nucl. Mater., 1997, vol. 249, pp. 77–86.CrossRefGoogle Scholar
  38. 38.
    Stoller, R.E. and Guiriec, S.G., Secondary factors influencing cascade damage formation, J. Nucl. Mater., 2004, vols. 329–333, pp. 1238–1242.CrossRefGoogle Scholar
  39. 39.
    Gao, F., Bacon, D.J., Calder, A.F., Flewitt, P.E.J., and Lewis, T.A., Computer simulation study of cascade overlap effects in a-iron, J. Nucl. Mater., 1996, vol. 230, pp. 47–56.CrossRefGoogle Scholar
  40. 40.
    Samaras, M., Derlet, P.M., van Swygenhoven, H., and Victoria, M., Computer simulation of displacement cascades in nanocrystalline Ni, Phys. Rev. Lett., 2002, vol. 88, p. 125505.CrossRefGoogle Scholar
  41. 41.
    Rose, M., Balogh, A.G., and Hahn, H., Instability of irradiation induced defects in nanostructured materials, Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, vols. 127–128, pp. 119–122.CrossRefGoogle Scholar
  42. 42.
    Chimi, Y., Iwase, A., Ishikawa, N., Kobiyama, M., Inami, T., and Okuda, S., Accumulation and recovery of defects in ion-irradiated nanocrystalline gold, J. Nucl. Mater., 2001, vol. 297, pp. 355–357.CrossRefGoogle Scholar
  43. 43.
    Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y., and Sickafus, K.E., Enhanced radiation tolerance in nanocrystalline MgGa2O4, Appl. Phys. Lett., 2007, vol. 90, p. 263115.CrossRefGoogle Scholar
  44. 44.
    Nordlund, K. and Averback, R.S., Point defect movement and annealing in collision cascades, Phys. Rev. B, 1997, vol. 56, pp. 2421–2431.CrossRefGoogle Scholar
  45. 45.
    Samaras, M., Hoffelner, W., and Victoria, M., Irradiation of preexisting voids in nanocrystalline iron, J. Nucl. Mater., 2006, vol. 352, pp. 50–56.CrossRefGoogle Scholar
  46. 46.
    Voskoboinikov, R.E., Interaction of collision cascades with an isolated edge dislocation in aluminium, Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 303, pp. 125–128.CrossRefGoogle Scholar
  47. 47.
    Voskoboinikov, R.E., MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium, Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 303, pp. 104–107.CrossRefGoogle Scholar
  48. 48.
    Terentyev, D., Vortler, K., Bjorkas, C., Nordlund, K., and Malerba, L., Primary radiation damage in bcc Fe and Fe–Cr crystals containing dislocation loops, J. Nucl. Mater., 2011, vol. 417, pp. 1063–1066.CrossRefGoogle Scholar
  49. 49.
    Korchuganov, A.V., Zolnikov, K.P., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., The mobility of edge dislocations in stressed iron crystals under irradiation, AIP Conf. Proc., 2015, vol. 1683, p. 020095.CrossRefGoogle Scholar
  50. 50.
    Nita, N., Schaeblin, R., and Victoria, M., Impact of irradiation on the microstructure of nanocrystalline materials, J. Nucl. Mater., 2004, vol. 953, pp. 329–333.Google Scholar
  51. 51.
    Kilmamentov, A.R., Gunderov, D.V., Valiev, R.Z., Balogh, A.G., and Hahn, H., Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy, Scr. Mater., 2008, vol. 59, pp. 1027–1030.CrossRefGoogle Scholar
  52. 52.
    Sugio, K., Shimomura, Y., and Diaz de la Rubia, T., Computer simulation of displacement damage cascade formation near sigma 5 twist boundary in silver, J. Phys. Soc. Jpn., 1998, vol. 67, pp. 882–889.CrossRefGoogle Scholar
  53. 53.
    Samaras, M., Derlet, P.M., van Swygenhoven, H., and Victoria, M., Atomic scale modeling of the primary damage state of irradiated fcc and bcc nanocrystalline metals, J. Nucl. Mater., 2006, vol. 351, pp. 47–55.CrossRefGoogle Scholar
  54. 54.
    Hasnaoui, A., van Swygenhoven, H., and Derlet, P.M., On nonequilibrium grain boundaries and their effect on thermal and mechanical behavior: a molecular dynamics computer simulation, Acta Mater., 2002, vol. 50, pp. 3927–3939.CrossRefGoogle Scholar
  55. 55.
    Stoller, R.E., Kamenski, P.J., and Osetskiy, Yu.N., Materials for Future Fusion and Fission Technologies, Warrendale, PA: Mater. Res. Soc., 2009, vol. 1125, pp. 109–120.Google Scholar
  56. 56.
    Fukushima, H., Jenkins, M.L., and Kirk, M.A., On the determination of the nature of defect clusters produced by displacement cascades. Part II.Application of stereo imaging techniques to heavy-ion damage in copper, Philos. Mag. A, 1997, vol. 75, pp. 1583–1602.CrossRefGoogle Scholar
  57. 57.
    Nordlund, K., Keinonen, J., Ghaly, M., and Averback, R.S., Coherent displacement of atoms during ion irradiation, Nature, 1999, vol. 398, pp. 49–51.CrossRefGoogle Scholar
  58. 58.
    Stoller, R.E., The effect of free surfaces on cascade damage production in iron, J. Nucl. Mater., 2002, vols. 307–311, pp. 935–940.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Korchuganov
    • 1
  • V. M. Chernov
    • 2
  • K. P. Zolnikov
    • 1
  • D. S. Kryzhevich
    • 1
  • S. G. Psakhie
    • 1
  1. 1.Institute of Strength Physics and Materials ScienceSiberian Branch of Russian Academy of SciencesTomskRussia
  2. 2.Bochvar High-Technology Research Institute of Inorganic MaterialsMoscowRussia

Personalised recommendations