Inorganic Materials: Applied Research

, Volume 7, Issue 5, pp 750–755 | Cite as

Effect of annealing on the structure and phase transformation in ZrO2–MgO ceramic powders

  • A. V. Kanaki
  • S. P. Buyakova
  • S. N. Kulkov
General Purpose Materials


The structure and phase composition of ZrO2–MgO powders with the MgO content from 9 to 43 mol % obtained by the plasma chemical method after annealing at 700–1400°С are studied. Differential scanning calorimetry and powder thermogravimetric analysis are carried out. It is found that, in the course of heating, the mass loss and the endothermic reactions energy increase with the increase in the MgO content. In the initial state, the powders containing more than 25 mol % of MgO are supersaturated solid solutions of cubic ZrO2. Water desorption processes and decomposition of residual nitrates are observed in powders up to 420°С. The endothermic peak at high temperatures is due to the dehydration process and decomposition of the cubic ZrO2 solid solution.


zirconium dioxide magnesia phase transformations endothermic reaction dehydration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Popilski, R.Y. and Kondrashov, F.V., Pressovanie keramicheskih poroshkov (Compression of Ceramic Powders), Moscow: Metallurgiya, 1968.Google Scholar
  2. 2.
    Kalinovich, D.F., Kuznetsova, L.I., and Denisenko, E.T., Zirconium dioxide: Properties and application, Poroshk. Metall., 1987, no. 1, pp. 98–102.Google Scholar
  3. 3.
    Belyakov, A.V. and Bakunov, V.S., Formation of stable and crack resistant structures in ceramic materials (review), Steklo Keram., 1998, no. 1, pp. 12–17.Google Scholar
  4. 4.
    Konstantinova, T.E., Danilenko, I.A., Tonkii, V.V., and Glazunova, V.A., Production of nano-dispersed zirconium dioxide powders: From novation to innovation, Nauka Innovatsii, 2005, vol. 1, no. 3, pp. 78–87.Google Scholar
  5. 5.
    Strakhov, V.I. and Migal’, V.P., Phase relationship and properties of zirconia-periclase based materials, Ogneupory Tekh. Keram., 2009, no. 10, pp. 25–31.Google Scholar
  6. 6.
    Morozova, L.V., Vasil’eva, E.A., and Lapshin, A.E., Synthesis of nanoceramics in ZrO2–Y2O3–CeO2 system, Ogneupory Tekh. Keram., 2004, no. 11, pp. 24–27.Google Scholar
  7. 7.
    Buyakova, S.P., Structure development in nanocrystalline powder system ZrO2(MexOy), Poroshk. Metall., 2007, no. 6, pp. 74–78.Google Scholar
  8. 8.
    Suzdalev, I.P. and Suzdalev, P.I., Discreteness of nanostructures and critical dimensions of nanoclusters, Russ. Chem. Rev., 2006, vol. 75, no. 8, pp. 637–670.CrossRefGoogle Scholar
  9. 9.
    Buyakova, S.P. and Kul’kov, S.N., Effect of mechanical processing of ultrafine ZrO2 + 3 wt % MgO powder on the microstructure of ceramics produced from it, Inorg. Mater., 2010, vol. 46, no. 10, pp. 1155–1158.CrossRefGoogle Scholar
  10. 10.
    Rezai, M. and Alavi, S.M., Synthesis of ceria doped nanozirconia powder by a polymerized complex method, J. Porous Mater., 2008, no. 10, pp. 117–125.Google Scholar
  11. 11.
    Stubican, V.S., Phase equilibria and metastabilities in the systems ZrO2–MgO,ZrO2–CaO, and ZrO2–Y2O3, Adv. Ceram., 1980, vol. 24, pp. 71–82.Google Scholar
  12. 12.
    Yin, Y. and Argent, B.B., Phase diagrams and thermodynamics of the systems ZrO2–CaO and ZrO2—MgO, J. Phase Equilibria, 1993, vol. 14, no. 4, pp. 439–450.CrossRefGoogle Scholar
  13. 13.
    Khakhalkin, V.V. and Kul’kov, S.N., Effects of hotpressing temperature on phase composition and crystalline structure of highly-dispersed ZrO2–MgO powder system, Perspekt. Mater., 2010, no. 2, pp. 98–102.Google Scholar
  14. 14.
    Strekalovskii, V.N., Polezhaev, Yu.M., and Pal’guev, S.F., Oksidy s primesnoi razuporyadochennost’yu: sostav, struktura, fazovye prevrashcheniya (Oxides with Impurity Disorder: Oxides with Impurity Disorder: Composition, Structure, and Phase Transformations), Moscow: Nauka, 1987.Google Scholar
  15. 15.
    Odnik, H.M. and McMurdie, H.F., Phase Diagrams for Zirconium and Zirconium System, Maryland: Phase Diagram Data Center, 1999.Google Scholar
  16. 16.
    Yong, D. and Zhanpeng, J., Optimization and calculation of the ZrO2–MgO system, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1991, vol. 15, no. 1, pp. 59–68.CrossRefGoogle Scholar
  17. 17.
    Kucza, W. and Oblakowski, J., Synthesis and characterization of alumina- and zirconia-based powders obtained by the ultrasonic spray pyrolysis, J. Therm. Anal. Calorim., 2007, vol. 88, no. 1, pp. 65–69.CrossRefGoogle Scholar
  18. 18.
    Shevchenko A.V. and Ruban A.K. Hydrothermal synthesis of ultrafine zirconia powders, Powder Metall. Met. Ceram., 1997, vol. 36, nos. 7–8, pp. 420–424.Google Scholar
  19. 19.
    Kagawa, M. and Kikuchi, M., Stability of ultrafine tetragonal ZrO2 coprecipitated with Al2O3 by the spray- ICP technique, J. Am. Ceram. Soc., 1983, vol. 66, no. 11, pp. 751–754.CrossRefGoogle Scholar
  20. 20.
    Popov, V.V. and Petrunin, V.F., Research of formation processes and metastable phase stability of nanocrystalline ZrO2, Ogneupory Tekh. Keram., 2007, no. 8, pp. 8–13.Google Scholar
  21. 21.
    Yosuke, M. and Navrotsky, A., High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic-tetragonal phase transition, J. Chem. Thermodyn., 2006, vol. 38, pp. 211–223.CrossRefGoogle Scholar
  22. 22.
    Lega, D., Antonini, A., Ciccioli, A., Brutti, S., and Lenzuni, P., Low scan rate DSC study of the monoclinic- tetragonal transition in zirconia, Thermochim. Acta, 2011, vol. 524, pp. 18–22.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations