Advertisement

Inorganic Materials: Applied Research

, Volume 7, Issue 4, pp 493–496 | Cite as

Strengthening of bone cements based on tribasic calcium phosphate by calcium carbonate granules

  • V. V. Smirnov
  • O. S. Antonova
  • M. A. Goldberg
  • S. V. Smirnov
  • A. S. Baikin
  • S. M. Barinov
Article
  • 20 Downloads

Abstract

The influence of the size and number of calcium carbonate granules introduced to the cement matrix of an alpha-tribasic calcium phosphate–orthophosphoric acid solution on the compression strength of the composite material was studied. A potential increase in strength by a factor of six by the introduction of an optimal amount of granules into the matrix was determined.

Keywords

calcium phosphates calcium carbonate bone cements dispersion strengthening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Geros, R.Z., Chahayeb, A., and Shulman, A., Apatite calcium phosphates: Possible dental restauration materials, J. Dent. Res., 1982, vol. 61, pp. 343–347.Google Scholar
  2. 2.
    Brown, W.E. and Chow, L.C., A new calcium phosphate, water setting cement, in Cements Res. Progress Ed. by W. E. Brown, Ohio: ACerS, 1987. pp. 352–379.Google Scholar
  3. 3.
    Barinov, S.M. and Komlev, V.S., Calcium-phosphate bone cements (a review), Part I. Astringent systems, Materialovedenie, 2014, no. 1, pp. 33–40.Google Scholar
  4. 4.
    Dorozhkin, S.V., Calcium orthophosphate cements and concretes, Materials, 2009, vol. 2, pp. 221–291.CrossRefGoogle Scholar
  5. 5.
    Teterina, A.Yu., Egorov, A.A., Fedotov, A.Yu., Barinov, S.M., and Komlev, V.S., Modification of bone cements in the calcium phosphate-chitosan systems by ceramic and alginate beads, Dokl. Chem., 2015, vol. 461, pp. 104–107.CrossRefGoogle Scholar
  6. 6.
    Ohgushi, H., Okumura, M., Yoshikawa, T., Inoue, K., and Shors, E.C., Bone formation process in porous calcium carbonate and hydroxyapatite, J. Biomed. Mater. Res, 1992, vol. 26, pp. 885–895.CrossRefGoogle Scholar
  7. 7.
    Fernandez, E., Planell, J.A., and Best, S.M., Precipitation of carbonated apatite in the cement system Ca3(PO4)2–Ca(H2PO4)2–CaCO3, J. Biomed. Mater. Res., 1999, vol. 47, pp. 466–471.CrossRefGoogle Scholar
  8. 8.
    Chissov, V.I., Sviridova, I.K., Sergeeva, N.S., Kirsanova, V.A., Akhmedova, S.A., Filyushin, M.M., Barinov, S.M., Fadeeva, I.V., Komlev, V.S., and Smirnov, V.V., In Vitro study of matrix surface properties of porous granulated calcium-phosphate ceramic materials made in Russia, Bull. Exper. Biology Medicine, 2008, vol. 145, pp. 499–503.CrossRefGoogle Scholar
  9. 9.
    Komlev, V.S., Barinov, S.M., and Koplik, E.V., A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release, Biomaterials, 2002, vol. 23, pp. 3449–3454.CrossRefGoogle Scholar
  10. 10.
    Komlev, V.S., Barinov, S.M., Girardin, E., Oscarsson, S., Rosengren, A., Rustichelli, F., and Orlovskii, V.P., Porous spherical hydroxyapatite and fluorhydroxyapatite granules: processing and characterization, Sci. Techn. Adv. Mater., 2003, vol. 4, pp. 503–508.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Smirnov
    • 1
  • O. S. Antonova
    • 1
  • M. A. Goldberg
    • 1
  • S. V. Smirnov
    • 1
  • A. S. Baikin
    • 1
  • S. M. Barinov
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceMoscowRussia

Personalised recommendations