Inorganic Materials: Applied Research

, Volume 7, Issue 4, pp 465–470 | Cite as

Aging processes in low-alloy bronzes after equal-channel angular pressing

  • D. V. ShanginaEmail author
  • N. R. Bochvar
  • S. V. Dobatkin


In this work, the aging processes in the alloys Cu–0.7% Cr, Cu–0.9% Hf, and Cu–0.7% Cr–0.9% Hf after equal-channel angular pressing (ECAP) are studied. ECAP leads to the dispersion of grains/subgrains up to 200–250 nm in the Cu–0.7% Cr–0.9% Hf alloy. It is shown that the Cu5Hf particles upon aging lead to more considerable strengthening and improvement of thermal stability as compared to Cr particles. The combined alloying with Cr and Hf results in the maximum strength upon aging. The optimal aging conditions making it possible to obtain simultaneously high strength, plasticity, and electrical conductivity in the alloys under study are determined.


copper alloys equal-channel angular pressing ultrafine-grain structure aging electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valiev, R.Z., Zhilyaev, A.P., and Langdon, T.G., Bulk Nanostructured Materials: Fundamentals and Applications Hoboken, New Jersey: Wiley, 2014.Google Scholar
  2. 2.
    Amouyal, Y., Divinski, S.V., Estrin, Y., and Rabkin, E., Short-circuit diffusion in an ultrafine-grained copper - zirconium alloy produced by equal channel angular pressing, Acta Mater., 2007, vol. 55, pp. 5968–5979.CrossRefGoogle Scholar
  3. 3.
    Kuzel, R., Janecek, M., Matej, Z., Cizek, J., Dopita, M., and Srba, O., Microstructure of equal-channel angular pressed Cu and Cu–Zr samples studied by different methods, Metall. Mater. Trans. A, 2009, vol. 41, pp. 1174–1190.CrossRefGoogle Scholar
  4. 4.
    Valdes, L.K., Munoz-Morris, M.A., and Morris, D.G., Optimisation of strength and ductility of Cu–Cr–Zr by combining severe plastic deformation and precipitation, Mater. Sci. Eng., A, 2012, vol. 536, pp. 181–189.CrossRefGoogle Scholar
  5. 5.
    Jayakumar, P.K., Balasubramanian, K., and Rabindranath, T.G., Recrystallisation and bonding behavior of ultra fine grained copper and Cu–Cr–Zr alloy using ECAP, Mater. Sci. Eng., A, 2012, vol. 538, pp. 7–13.CrossRefGoogle Scholar
  6. 6.
    Dopita, M., Janecek, M., Kuzel, R., Seifert, H.J., and Dobatkin, S., Microstructure evolution of CuZr polycrystals processed by high pressure torsion, J. Mater. Sci., 2010, vol. 45, pp. 4631–4644.CrossRefGoogle Scholar
  7. 7.
    Wongsa-Ngam, J., Kawasaki, M., and Langdon, T.G., Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion, J. Mater. Sci., 2012, vol. 47, pp. 7782–7788.CrossRefGoogle Scholar
  8. 8.
    Shangina, D.V., Gubicza, J., Dodony, E., Bochvar, N.R., Straumal, P.B., Tabachkova, N.Yu., and Dobatkin, S.V., Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments, J. Mater. Sci., 2014, vol. 49, pp. 6674–6681.CrossRefGoogle Scholar
  9. 9.
    Mishnev, R., Shakhova, I., Belyakov, A., and Kaibyshev, R., Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy, Mater. Sci. Eng., A, 2015, vol. 629, pp. 29–40.Google Scholar
  10. 10.
    Zel’dovich, V.I., Khomskaya, I.V., Frolova, N.Yu., Kheifets, A.E., Shorokhov, E.V., and Nasonov, P.A., Structure of chromium-zirconium brinze subjected yo dynamic channel-angular pressing and aging, Phys. Met. Metallogr., 2013, vol. 114, pp. 411–418.CrossRefGoogle Scholar
  11. 11.
    Li, J., Wongsa-Ngam, J., Xu, J., Shan, D., Guo, B., and Langdon, T.G., Wear resistance of an ultrafinegrained Cu–Zr alloy processed by equalchannel angular pressing, Wear, 2015, vol. 326-327, pp. 10–19.CrossRefGoogle Scholar
  12. 12.
    Purcek, G., Yanar, H., Saray, O., Karaman, I., and Maier, H.J., Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy, Wear, 2014, vol. 311, pp. 149–158.CrossRefGoogle Scholar
  13. 13.
    Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., and Duc, Z.Z., Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing, Mater. Sci. Eng., A, 2007, vol. 459, pp. 303–308.CrossRefGoogle Scholar
  14. 14.
    Vinogradov, A., Ishida, T., Kitagawa, K., and Kopylov, V.I., Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing, Acta Mater., 2005, vol. 53, pp. 2181–2192.CrossRefGoogle Scholar
  15. 15.
    Vinogradov, A., Patlan, V., Suzuki, Y., Kitagawa, K., and Kopylov, V.I., Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing, Acta Mater., 2002, vol. 50, pp. 1639–1651.CrossRefGoogle Scholar
  16. 16.
    Rozenberg, V.M. and Dzutsev, V.T., Diagrammy izotermicheskogo raspada v splavakh na osnove medi (Diagrams of Isothermal Decomposition in Cu-based Alloys), Moscow: Metallurgiya, 1989, [in Russian].Google Scholar
  17. 17.
    Nikolaev, A.K. and Kostin, S.A., Med’ i zharoprochnye mednye splavy (Copper and Refractory Copper Alloys), Moscow: DPK Press, 2012, [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. V. Shangina
    • 1
    • 2
    Email author
  • N. R. Bochvar
    • 1
  • S. V. Dobatkin
    • 1
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Laboratory of Hybrid Nanostructured MaterialsNational University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations