Skip to main content
Log in

Aging processes in low-alloy bronzes after equal-channel angular pressing

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In this work, the aging processes in the alloys Cu–0.7% Cr, Cu–0.9% Hf, and Cu–0.7% Cr–0.9% Hf after equal-channel angular pressing (ECAP) are studied. ECAP leads to the dispersion of grains/subgrains up to 200–250 nm in the Cu–0.7% Cr–0.9% Hf alloy. It is shown that the Cu5Hf particles upon aging lead to more considerable strengthening and improvement of thermal stability as compared to Cr particles. The combined alloying with Cr and Hf results in the maximum strength upon aging. The optimal aging conditions making it possible to obtain simultaneously high strength, plasticity, and electrical conductivity in the alloys under study are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, R.Z., Zhilyaev, A.P., and Langdon, T.G., Bulk Nanostructured Materials: Fundamentals and Applications Hoboken, New Jersey: Wiley, 2014.

    Google Scholar 

  2. Amouyal, Y., Divinski, S.V., Estrin, Y., and Rabkin, E., Short-circuit diffusion in an ultrafine-grained copper - zirconium alloy produced by equal channel angular pressing, Acta Mater., 2007, vol. 55, pp. 5968–5979.

    Article  CAS  Google Scholar 

  3. Kuzel, R., Janecek, M., Matej, Z., Cizek, J., Dopita, M., and Srba, O., Microstructure of equal-channel angular pressed Cu and Cu–Zr samples studied by different methods, Metall. Mater. Trans. A, 2009, vol. 41, pp. 1174–1190.

    Article  Google Scholar 

  4. Valdes, L.K., Munoz-Morris, M.A., and Morris, D.G., Optimisation of strength and ductility of Cu–Cr–Zr by combining severe plastic deformation and precipitation, Mater. Sci. Eng., A, 2012, vol. 536, pp. 181–189.

    Article  Google Scholar 

  5. Jayakumar, P.K., Balasubramanian, K., and Rabindranath, T.G., Recrystallisation and bonding behavior of ultra fine grained copper and Cu–Cr–Zr alloy using ECAP, Mater. Sci. Eng., A, 2012, vol. 538, pp. 7–13.

    Article  CAS  Google Scholar 

  6. Dopita, M., Janecek, M., Kuzel, R., Seifert, H.J., and Dobatkin, S., Microstructure evolution of CuZr polycrystals processed by high pressure torsion, J. Mater. Sci., 2010, vol. 45, pp. 4631–4644.

    Article  CAS  Google Scholar 

  7. Wongsa-Ngam, J., Kawasaki, M., and Langdon, T.G., Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion, J. Mater. Sci., 2012, vol. 47, pp. 7782–7788.

    Article  CAS  Google Scholar 

  8. Shangina, D.V., Gubicza, J., Dodony, E., Bochvar, N.R., Straumal, P.B., Tabachkova, N.Yu., and Dobatkin, S.V., Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments, J. Mater. Sci., 2014, vol. 49, pp. 6674–6681.

    Article  CAS  Google Scholar 

  9. Mishnev, R., Shakhova, I., Belyakov, A., and Kaibyshev, R., Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy, Mater. Sci. Eng., A, 2015, vol. 629, pp. 29–40.

    CAS  Google Scholar 

  10. Zel’dovich, V.I., Khomskaya, I.V., Frolova, N.Yu., Kheifets, A.E., Shorokhov, E.V., and Nasonov, P.A., Structure of chromium-zirconium brinze subjected yo dynamic channel-angular pressing and aging, Phys. Met. Metallogr., 2013, vol. 114, pp. 411–418.

    Article  Google Scholar 

  11. Li, J., Wongsa-Ngam, J., Xu, J., Shan, D., Guo, B., and Langdon, T.G., Wear resistance of an ultrafinegrained Cu–Zr alloy processed by equalchannel angular pressing, Wear, 2015, vol. 326-327, pp. 10–19.

    Article  Google Scholar 

  12. Purcek, G., Yanar, H., Saray, O., Karaman, I., and Maier, H.J., Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy, Wear, 2014, vol. 311, pp. 149–158.

    Article  CAS  Google Scholar 

  13. Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., and Duc, Z.Z., Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing, Mater. Sci. Eng., A, 2007, vol. 459, pp. 303–308.

    Article  Google Scholar 

  14. Vinogradov, A., Ishida, T., Kitagawa, K., and Kopylov, V.I., Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing, Acta Mater., 2005, vol. 53, pp. 2181–2192.

    Article  CAS  Google Scholar 

  15. Vinogradov, A., Patlan, V., Suzuki, Y., Kitagawa, K., and Kopylov, V.I., Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing, Acta Mater., 2002, vol. 50, pp. 1639–1651.

    Article  CAS  Google Scholar 

  16. Rozenberg, V.M. and Dzutsev, V.T., Diagrammy izotermicheskogo raspada v splavakh na osnove medi (Diagrams of Isothermal Decomposition in Cu-based Alloys), Moscow: Metallurgiya, 1989, [in Russian].

    Google Scholar 

  17. Nikolaev, A.K. and Kostin, S.A., Med’ i zharoprochnye mednye splavy (Copper and Refractory Copper Alloys), Moscow: DPK Press, 2012, [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Shangina.

Additional information

Original Russian Text © D.V. Shangina, N.R. Bochvar, S.V. Dobatkin, 2015, published in Materialovedenie, 2015, No. 10, pp. 14–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangina, D.V., Bochvar, N.R. & Dobatkin, S.V. Aging processes in low-alloy bronzes after equal-channel angular pressing. Inorg. Mater. Appl. Res. 7, 465–470 (2016). https://doi.org/10.1134/S2075113316040328

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316040328

Keywords

Navigation