Skip to main content
Log in

Metal nanoparticles and quantum dots as photosensitizers of solar cell batteries

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The latest scientific research in the field of solar battery cell photosensitization by metal nanoparticles and quantum dots is considered. The effect of the nature and size of metal nanoparticles and quantum dots on electron transitions in large bandgap semiconductors is analyzed in order to find ways of enhancing the efficiency of solar energy conversion to useful work. The understanding of the mechanism of the photosensitization process using different techniques is required for successful development of improved solar batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holdren, J.P., Science and technology for sustainable well-being, Science, 2008, vol. 456, pp. 424–434.

    Article  Google Scholar 

  2. Lior, N., Energy resources and use: The present situation and possible paths to the future, Energy, 2008, vol. 33, pp. 842–857.

    Article  CAS  Google Scholar 

  3. Kamat, P.V., Meeting the clean energy demand: Nanostructure architectures for solar energy conversion, J. Phys. Chem. C, 2007, vol. 111, pp. 2834–2860.

    Article  CAS  Google Scholar 

  4. Gratzel, M., Artificial photosynthesis. Water cleavage into hydrogen and oxygen by visible light, Acc. Chem. Res., 1981, vol. 14, pp. 376–384.

    Article  Google Scholar 

  5. Bard, A.J. and Fox, M.A., Artificial photosynthesis. Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 1995, vol. 28, pp. 141–145.

    Article  CAS  Google Scholar 

  6. Brune, A., Jeong, G., Liddell, P.A., Sotomura, T., Moore, T.A., Moore, A.L., and Gust, D., Porphyrin–sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell, Langmuir, 2004, vol. 20, pp. 8366–8371.

    Article  CAS  Google Scholar 

  7. Campbell, W.M., Burrell, A.K., Officer, D.L., and Jolley, K.W., Porphyrins as light harvester in the due-sensitised TiO2 solar cell, Coord. Chem. Rev., 2004, vol. 248, pp. 1363–1379.

    Article  CAS  Google Scholar 

  8. D’Souza, F. and Ito, O., Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phtalocyanines, Coord. Chem. Rev., 2005, vol. 249, pp. 1410–1422.

    Article  Google Scholar 

  9. Guldi, D.M., Biomimetic assemblies of carbon nanostructures for photochemical energy conversion, J. Phys. Chem. B, 2005, vol. 109, pp. 11432–11441.

    Article  CAS  Google Scholar 

  10. Wasielewski, M.R., Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis, Org. Chem., 2006, vol. 71, pp. 5051–5066.

    CAS  Google Scholar 

  11. Kim, J.H., Nam, D.H., and Park, Ch.B., Nanobiocatalytic assemblies for artificial photosynthesis, Current Opinion in Biotechnology, 2014, vol. 28, pp. 1–9.

    Article  Google Scholar 

  12. Bard, A.J. and Fox, M.A., Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 1995, vol. 28, pp. 141–145.

    Article  CAS  Google Scholar 

  13. Parmon, V.N., Photoproduction of hydrogen (an overview of modern trends), Adv. Hydrogen Energy (Hydrogen Energy Prog.), 1990, vol. 8, pp. 801–813.

    CAS  Google Scholar 

  14. Turner, J.A., Sustainable hydrogen production, Science, 2004, vol. 305, pp. 972–974.

    Article  CAS  Google Scholar 

  15. Ogarev, V.A., Rudoi, V.M., and Dement’eva, O.V., Prospects for increasing the efficiency of water photodecomposition on inorganic stmiconductors, Russ. J. Phys. Chem., A 2014, vol. 88, pp. 181–191.

    Article  CAS  Google Scholar 

  16. Gerisher, H. and Luebke, M., A particle size effect in the sensitization of TiO2 electrodes by CdS deposit, J. Electroanal. Chem., 1986, vol. 204, pp. 225–227.

    Article  Google Scholar 

  17. Spanhel, L., Weller, H., and Henglein, A., Photochemistry of semiconductor colloid. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide, J. Am. Chem. Soc., 1987, vol. 109, pp. 6632–6635.

  18. Vogel, R., Hoyer, P., and Weller, H., Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem., 1994, vol. 98, pp. 3183–3188.

    Article  CAS  Google Scholar 

  19. Zaban, A., Micic, O.I., Gregg, B.A., and Nozik, A.J., Photosensitization of nanoporous TiO2 electrodes with InP quantum dots, Langmuir, 1998, vol. 14, pp. 3153–3156.

    Article  CAS  Google Scholar 

  20. Baba, R., Nakabayashi, S., Fujishima, A., and Honda, K., Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metalloaded semiconductor powders, J. Phys. Chem., 1985, vol. 89, pp. 1902–1905.

    Article  CAS  Google Scholar 

  21. Nosaka, Y., Norimatsu, K., and Miyama, H., The function of metals in metal-compounded semiconductor photocatalysts, Chem. Phys. Lett., 1984, vol. 106, pp. 128–132.

    Article  CAS  Google Scholar 

  22. Bamwenda, G.R., Tsubota, S., Kobayashi, T., and Haruta, M., Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2, J. Photochem. Photobiol., A, 1994, vol. 77, pp. 59–67.

    Article  CAS  Google Scholar 

  23. Haruta, M., Size- and support-dependency in the catalysis of gold, Catal. Today, 1997, vol. 36, pp. 153–156.

    Article  CAS  Google Scholar 

  24. Yang, Z.X., Wu, R.Q., and Goodman, D.W., Structure and electronic properties of Au on TiO2 (110), Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, pp. 14066–14071.

    Article  CAS  Google Scholar 

  25. Subramanian, V., Wolf, E.E., and Kamat, P.V., Catalysis with TiO2/Au nanocomposites. Effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc., 2004, vol. 126, pp. 4943–4950.

    Article  CAS  Google Scholar 

  26. Subramanian, V., Wolf, E.E., and Kamat, P.V., Semiconductor- metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?, J. Phys. Chem. B, 2001, vol. 105, pp. 11439–11446.

    Article  CAS  Google Scholar 

  27. Subramanian, V., Wolf, E.E., and Kamat, P.V., Influence of metal/metalion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles, Langmuir, 2003, vol. 19, pp. 469–474.

    Article  CAS  Google Scholar 

  28. Hirakawa, T. and Kamat, P.V., Electron storage and surface plasmon modulation in Ag-TiO2 clusters, Langmuir, 2004, vol. 20, pp. 5645–5647.

    Article  CAS  Google Scholar 

  29. Hirakawa, T. and Kamat, P.V., Charge separation and catalytic activity of Ag–TiO2 core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc., 2005, vol. 127, pp. 3928–3934.

    Article  CAS  Google Scholar 

  30. Rajeshwar, K., de Tacconi, N.R., and Chenthamarakshan, C.R., Semiconductor-based composite materials: Preparation, properties, and performance, Chem. Mater., 2001, vol. 13, pp. 2765–2782.

    CAS  Google Scholar 

  31. Kamat, P.V., Photoinduced transformation in semiconductormetal nanocomposite assemblies, Pure Appl. Chem., 2002, vol. 74, pp. 1693–1706.

    Article  CAS  Google Scholar 

  32. Robel, I., Subramanian, V., Kuno, M., and Kamat, P.V., Quantum dot solar cells. Harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic TiO2 films, J. Am. Chem. Soc., 2006, vol. 128, pp. 2385–2393.

    Article  CAS  Google Scholar 

  33. Choi, H., Nahm, Ch., Kim, J., Kim, Ch., Kang, S., Hwang, T., and Park, B., Review paper: Toward highly efficient quantum-dot and dye-sensitized solar cells, Curr. Appl. Phys., 2013, vol. 13, pp. S2–S13.

    Article  Google Scholar 

  34. Ruhle, S., Shalom, M., and Zaban, A., Quantum-dotsensitized solar cells, Chem. Phys. Chem., 2010, vol. 11, pp. 2290–2304.

    Google Scholar 

  35. Zhou, Zh., Yuan, Sh., Fan, J., Hon, Z., Zhou, W., Du, Z., and Wu, S., CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: Synthesis and performance optimization, NanoScale Res. Lett., 2012, vol. 7, pp. 652–660.

    Article  Google Scholar 

  36. Zhu, G., Xu, T., Lv, T., Pan, L., Zhao, Q., and Sun, Zh., Graphene incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells, J. Electroanal. Chem., 2011, vol. 650, pp. 248–251.

    Article  CAS  Google Scholar 

  37. Yang, Z., Chen, C.-Y., Roy, P., and Chang, H.-T., Quantum dot-sensitized solar cells incorporating nanomaterials, Chem. Commun., 2011, vol. 47, pp. 9561–9571.

    Article  CAS  Google Scholar 

  38. Fuke, N., Hoch, L.B., Koposov, A.V., Manner, V.W., Werder, D.J., Fukui, A., Koide, N., Katayama, H., and Sykora, M., CdSe quantum-dot-sensitized solar cell with 100% internal quantum efficiency, ACS Nano, 2010, vol. 4, pp. 6377–6386.

    Article  CAS  Google Scholar 

  39. Williams, K.J., Nelson, C.A., Yan, X., Li, I.S., and Zhu, X., Hot electron injection from quantum dots to TiO2, ACS Nano, 2013, vol. 26, pp. 1388–1394.

    Article  Google Scholar 

  40. Beard, M.C., Multiple exciton generation in semiconductor quantum dots, J. Phys. Chem. Lett., 2011, vol. 2, pp. 1282–1288.

    Article  CAS  Google Scholar 

  41. Etgar, L., Semiconductor nanocrystals as light harvesters in solar cells, Materials, 2013, vol. 6, pp. 445–459.

    Article  CAS  Google Scholar 

  42. Jun, H.K., Careem, M.A., and Arof, A.K., Quantum dot-sensitized solar cells–perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers, Renew. Sustain. Energy Rev., 2013, vol. 22, pp. 148–167.

    Article  CAS  Google Scholar 

  43. Guyot-Sionnest, P., Shim, M., Matranga, C., and Hines, M., Long-lived quantum-confined infrared transition in CdSe nano-crystal, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 60, pp. R2182–R2184.

    Article  Google Scholar 

  44. Marco, C., Giant suppression of Auger electron cooling in charged nanocrystals, Appl. Phys. Lett., 2007, vol. 91, pp. 172114–172117.

    Article  Google Scholar 

  45. Nozik, A., Multiple exciton generation in semiconductor quantum dots, J. Chem. Phys. Lett., 2008, vol. 457, pp. 3–11.

    Article  CAS  Google Scholar 

  46. Ellinson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O., Nozik, A., Shabaev, V.A., and Eflos, A.L., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett., 2005, vol. 5, pp. 865–871.

    Article  Google Scholar 

  47. Schaller, R.D., Pictryga, J.M., and Klimov, V.I., Carrier multiplication in inas nanocrystal quantum dots with an onset defined by the energy conservation limit, Nano Lett., 2007, vol. 7, pp. 3469–3476.

    Article  CAS  Google Scholar 

  48. Ben-Lulu, M., Mocatta, D., Bonn, M., Banin, U., and Ruhman, S., On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell 1/shell 2 quantum dots, Nano Lett., 2008, vol. 8, pp. 1207–1211.

    Article  CAS  Google Scholar 

  49. Huang, J., Huang, Z.Q., Yang, Y., Zhu, H., and Lian, T.Q., Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue, J. Am. Chem. Soc., 2010, vol. 132, pp. 4858–4864.

    Article  CAS  Google Scholar 

  50. Yang, Y., Rodrigues-Cordoba, W., and Lian, T., Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot - methylene blue complexes probed by electron and hole intraband transition, J. Am. Chem. Soc., 2011, vol. 133, pp. 9246–9249.

    Article  CAS  Google Scholar 

  51. Zhu, H. and Lian, T., Enhanced multiple exciton dissociation from CdSe quantum rods: The effect of nanocrystal shape, J. Am. Chem. Soc., 2012, vol. 134, pp. 11289–11297.

    Article  CAS  Google Scholar 

  52. Wang, X., Koleilat, G.I., Tang, J., Liu, H., Kramer, I.J., Debnath, R., Brzozowski, L., Barkhouse, D.A.R., Levina, L., Hoogland, S., and Sargent, E.H., Tandem colloidal quantum dot solar cells emppoying a graded recombination layer, Nature Photonics, 2011, vol. 5, pp. 480–484.

    Article  CAS  Google Scholar 

  53. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., and Kamat, P.V., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe—TiO2 architecture, J. Am. Chem. Soc., 2008, vol. 130, pp. 4007–4015.

    Article  CAS  Google Scholar 

  54. Chen, J., Lei, W., and Deng, W.Q., Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot, Nanoscale, 2011, vol. 3, pp. 674–677.

    Article  CAS  Google Scholar 

  55. Emin, S., Singh, S.P., Han, I., Satoh, N., and Islam, A., Colloidal quantum dot solar cells, Solar Energy, 2011, vol. 85, pp. 1264–1282.

    Article  CAS  Google Scholar 

  56. Murray, C.B., Norris, D.J., and Bawendi, N.G., Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, vol. 115, pp. 8706–8712.

    Article  CAS  Google Scholar 

  57. Chai, Y., Seal, M., Kim, W., and Yang, K., Chemical bath deposition of staichiometric CdSe quantum dots for efficient quantum-dotsensitized solar cell application, J. Phys. Chem. C, 2014, vol. 118, pp. 5664–5670.

    Article  Google Scholar 

  58. Giménez, S., Mora-Seró, I., Macor, I., Guijarro, N., Lana-Villarreal, T., and Gómez. I., Improving the performance of colloidal quantum-dot-sensitized solar cells, Nanotecnology, 2009, vol. 20, pp. 295204–295210.

    Article  Google Scholar 

  59. Guijarra, N., Lana-Villareal, T., Mora-Sera, I., Bisquert, J., and Gómez, R., CdSe quantum-dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment, J. Phys. Chem. C, 2009, vol. 113, pp. 4208–4214.

    Article  Google Scholar 

  60. Yu, X.-Y., Lei, B.-X., Kuang, D.-B., and Su, C.-Y., High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells, J. Mater. Chem., 2012, vol. 22, pp. 12058–12063.

    Article  CAS  Google Scholar 

  61. Jung, S.W., Kim, J.-H., Kim, H., Choi, Ch.-J., and Ahn, K.S., ZnS over layer on in situ chemical bath deposition CdS quantum dot-assembled TiO2 films for quantum dot-sensitized solar cells, J. Curr. Appl. Phys., 2012, vol. 12, pp. 1459–1464.

    Article  Google Scholar 

  62. Jiao, J., Zhou, Z.-J., Zhou, W.-H., and Wu, S.-X., CdS and PbS quantum dots co sensitized TiO2 nanoroad arrays with improved performance for solar cells application, Mater. Sci. Semicond. Process, 2013, vol. 16, pp. 435–440.

    Article  CAS  Google Scholar 

  63. de la Fuente, M.S., Sanchez, R.S., González-Pedro, V., Boix, P.P., Mhaisalkar, S.G., Rincon, M.E., Bisquert, J., and Mora-Seró, J., Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells, J. Phys. Chem. Lett., 2013, vol. 4, pp. 1519–1525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ogaryov.

Additional information

Original Russian Text © V.A. Ogaryov, V.M. Rudoy, O.V. Dementyeva, 2015, published in Materialovedenie, 2015, No. 11, pp. 35–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogaryov, V.A., Rudoy, V.M. & Dementyeva, O.V. Metal nanoparticles and quantum dots as photosensitizers of solar cell batteries. Inorg. Mater. Appl. Res. 7, 509–516 (2016). https://doi.org/10.1134/S2075113316040237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316040237

Keywords

Navigation