Inorganic Materials: Applied Research

, Volume 7, Issue 4, pp 598–602 | Cite as

Analysis of dispersion hardening of nickel-based alloys

Article
  • 13 Downloads

Abstract

This article describes a procedure for calculation and construction of the yield point as a function of average particle size of the Ni3Al phase at 750, 850, and 950°C. The developed approach can be applied to thermally hardenable alloys and is related to nucleation of intermetallic phases. This procedure of calculation and analysis of dispersion hardening facilitates selection of optimum modes of thermal treatment aimed at production of preset particle size of phases, determining maximum hardening of aging alloys.

Keywords

intermetallic compound aging alloys yield point phase aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simonov, V.N. and Kurikhina, T.V., Forecasting of phase transformations in non-equilibrium structures, Tekhnol. Mashinostr., 2010, no. 9, pp. 5–7.Google Scholar
  2. 2.
    Slezov, V.V. and Sagalovich, V.V., Diffusive decomposition of solid solutions, Phys. Usp., 1987, vol. 30, 23–45.CrossRefGoogle Scholar
  3. 3.
    Zel’dovich, Ya.B., On the theory of the formation of new phase: Cavitation, Zh. Eksper. Teor. Fiz., 1942, vol. 12, pp. 525–538.Google Scholar
  4. 4.
    Kurikhina T.V. Development and optimization of regimes of thermal treatment of refractory nickel alloys, Extended Abstract of Candidate Sci. (Eng.) Dissertation, Moscow, 2013.Google Scholar
  5. 5.
    Martin, J., Doerty, R., and Cantor, B., Stability of Microstructure in Metallic Systems, Cambridge: Cambridge University, 1977, 1993; Moscow: Atomizdat, 1978.Google Scholar
  6. 6.
    Fizicheskoe materialovedenie: Uchebnik dlya vuzov (Physical Material Science. A Tutorial for Higher Educ. Inst.), Ed. by Kalina, B.A., Moscow: NIYaU MIFI, 2012, [in Russian].Google Scholar
  7. 7.
    Portnov, V.N. and Chuprunov, E.V., Vozniknovenie i rost kristallov (Appearance and Growth of Crystals), Moscow: FizMatLit., 2006, [in Russian].Google Scholar
  8. 8.
    Li, X., Miodownic, A.P., and Saunders, N., Modelling of materials properties in duplex stainless steels, Mater. Sci. Technol., 2002, vol. 18, pp. 861–868.CrossRefGoogle Scholar
  9. 9.
    Mazilkin, A.A., Straumal, B.B., Borodachenkova, M.V., Valiev, R.Z., Kogtenkova, O.A., and Baretzky, B., Gragual softening of Al–Zn alloys during high pressure torsion, Mater. Lett., 2012, vol. 84, pp. 63–65.CrossRefGoogle Scholar
  10. 10.
    Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Rabkin, E., Goll, D., Shutz, G., Baretzky, B., and Valiev, R., Deformation-driven formation of equilibrium phases in the Cu–Ni alloys, J. Mater. Sci., 2012, vol. 47, pp. 360–367.CrossRefGoogle Scholar
  11. 11.
    Guo, Z., Saunders, N., Miodownik, A.P., and Schille, J.-Ph., Quantification of high temperature strength of nickel-based superalloys, Guildford GU2, 7YG, 2007, vol. 546—549, pp. 1319–1326.Google Scholar
  12. 12.
    Gol’dshtein, M.I., Litvinov, V.S., and Bronfin, B.M., Metallofizika vysokoprochnykh splavov. Uchebnoe posobie dlya vuzov (Metallophysics of High-strength Alloys. A Tutorial for Higher Educ. Inst.) Moscow: Metallurgiya, 1986, [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations