Skip to main content
Log in

Complex organomineral additive for blended portland cement

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The results of experiments for optimization of the composition of blended portland cement using an organomineral modifier based on a three-component mineral additive and the Pantarhit Plv 160 hyperplasticizer are presented. The response functions in the form of two-parameter dependences were developed using the method of mathematical experiment planning based on the regression equations obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lothenbach, B., Scrivener, K., and Hooton, R.D., Supplementary cementitious materials, Cement Concrete Res., 2011, no. 41, pp. 1244–1256.

    Article  CAS  Google Scholar 

  2. Shi, C., Fernández Jiménez, A., and Palomo, A., New cements for the 21st century: The pursuit of an alternative to portland cement, Cement Concrete Res., 2011, no. 41, pp. 750–763.

    Article  CAS  Google Scholar 

  3. Bagheri Ali Reza, Zanganeh Hamed, Moalemi Mohamad Mehdi, Mechanical and durability properties of ternary concretes containing silica fume and low reactivity blast furnace slag, Cement Concrete Comp., 2012, no. 34, pp. 663–670.

    Article  CAS  Google Scholar 

  4. Morsy, M.S., Al-Salloum, Y.A., Abbas, H., and Alsayed, S.H., Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures, Constr. Build. Mater., 2012, no. 35, pp. 900–905.

    Article  Google Scholar 

  5. Wongkeo, W., Thongsanitgarn, P., and Chaipanich, A., Compressive strength and drying shrinkage of fly ashbottom ash-silica fume multi-blended cement mortars, Mater. Des., 2012, no. 36, pp. 655–662.

    Article  CAS  Google Scholar 

  6. Radlinski, M. and Olek, J., Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume, Cement Concrete Comp., 2012, no. 34, pp. 451–459.

    Article  CAS  Google Scholar 

  7. Vance, K., Aguayo, M., Oey, T., Sant, G., and Neithalath, N., Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin, Cement Concrete Comp., 2013, no. 39, pp. 93–103.

    Article  CAS  Google Scholar 

  8. Chindaprasirt, P. and Rukzon, S., Strength, porosity and corrosion resistance of ternary blend portland cement, rice husk ash and fly ash mortar, Constr. Build. Mater., 2008, no. 22, pp. 1601–1606.

    Article  Google Scholar 

  9. Antoni, M., Rossen, J., Martirena, F., and Scrivener, K., Cement substitution by a combination of metakaolin and limestone, Cement Concrete Res., 2012, no. 42, pp. 1579–1589.

    Article  CAS  Google Scholar 

  10. De Weerdt, K., Kjellsen, K.O., Sellevold, E., and Justnes, H., Synergy between fly ash and limestone powder in ternary cements, Cement Concrete Comp., 2011, no. 33, pp. 30–38.

    Article  Google Scholar 

  11. Batrakov, V.G., Modifitsirovannye betony. Teoriya i praktika (Modificated Concretes. Theory and Practice), Moscow: Tekhnoproekt, 1998, [in Russian].

    Google Scholar 

  12. Vovk, A.I., On some peculiarities of superplasticizer application, BSG. Stroitel. Gazeta, 2008, nol. 10, p. 5.

    Google Scholar 

  13. Vovk, A.I., On some peculiarities of superplasticizer application, Ch. 2, Technologiya Betonov, 2007, no. 6, pp. 18–19.

    Google Scholar 

  14. Spiratos, N., Page, M., Mailvaganam, N.P., et al. Superplasticizers for Concrete. Fundamental, Technology and Practice Ottava: Supplementary Cementing Materials for Sustainable Development, 2006.

    Google Scholar 

  15. Rocha, J. and Klinovski, J., Solid-slate NMR studies of the structure and reactivity of metakaolinite, Angewadle Chemie. Int. Ed. in English, 1990, vol. 29, pp. 553–554.

    Article  Google Scholar 

  16. Coleman, N.J. and Mcwhinnle, W.R., The solid state chemistry of metakaolin-blended ordinary portland cement, J. Mat. Sci., 2000, vol. 35, pp. 2701–2710.

    Article  CAS  Google Scholar 

  17. Brykov, A.S., Panfilov, A.S., and Mokeev, M.V., Effect of metakaolin structure on its binding properties in alkaline hydration, Russ. J. Appl. Chem., 2012, vol. 85, pp. 722–725.

    Article  CAS  Google Scholar 

  18. Teilor, H.F.V., Cement Chemistry, London: Thomas Telford, 1990; Moscow: Mir, 1996.

    Google Scholar 

  19. Heikal, M., Effect of calcium formate as an accelerator on the chemical and mechanical properties of pozzolanic cement pastes, Cement Concrete Res., 2004, no. 34, pp. 1051–1056.

    Article  CAS  Google Scholar 

  20. Curcio, F. and Pagliolico, S., Metakaolin as pozzolanic micro filler for highperformance mortars, Cement Concrete Res., 1998, no. 6, pp. 803–809.

    Article  Google Scholar 

  21. Volzhenskii, A.V., Burov, Yu.S., and Kolokol’nikov, V.S., Mineral’nye vyazhushchie veshchestva. Tekhnologiya i svoistva: uchebnik. 3-e izd. (Mineral Binding Substances. Technology and Properties. A Tutorial), Moscow: EKOLIT, 2011.

    Google Scholar 

  22. Butt, N.M., Tekhnologiya tsementa i drugikh vyazhushchikh materialov (Technology of Cement and Other Binding Materials), Moscow: Stroiizdat, 1976, [in Russian].

    Google Scholar 

  23. Pustovgar, A.P., Efficiency of application of activated dyatomide in dry building mixtures, Stroit. Mater., 2006, no. 10, pp. 2–4.

    Google Scholar 

  24. Kirsanova, A.A. and Kramar, L.Ya., Organomineral modifikators on the basis of metakaolin for cement concretes, Stroit. Mater., 2013, no. 10, pp. 54–56.

    Google Scholar 

  25. Kamalova, Z.A., Ermilova, E.Yu., and Nagaev, I.F., Study of plasticizer on polycarbosilate basis effect on strength and technological properties of concrete in dependence from cement type, in Proc. 1st Int. Sci.-Pract. Conf. “Technical Sciences: Contemporary Problems and Prospects of Development”, Privolzhsk. Nauchn.-Issl. Tsentr, Ioshkar-Ola, 2012, pp. 86–90.

    Google Scholar 

  26. Kamalova, Z.A., Ermilova, E.Yu., Rakhimov, R.Z., and Stoyanov, O.V., Superplasticizers in technology of composite concrete production, Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 8, pp. 148–152.

    Google Scholar 

  27. Kamalova, Z.A., Ermilova, E.Yu., Rakhimov, R.Z., and Stoyanov, O.V., Composite cements on the basis of mineral binary additive and superplasticizer, Vestn. Kazan. Tekhnol. Univ., 2014, vol. 17, no. 13, pp. 216–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Yermilova.

Additional information

Original Russian Text © E.Yu. Yermilova, Z.A. Kamalova, R.Z. Rakhimov, 2016, published in Materialovedenie, 2016, No. 2, pp. 44–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermilova, E.Y., Kamalova, Z.A. & Rakhimov, R.Z. Complex organomineral additive for blended portland cement. Inorg. Mater. Appl. Res. 7, 593–597 (2016). https://doi.org/10.1134/S2075113316040092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316040092

Keywords

Navigation