Skip to main content
Log in

Electronic energy-band structures of covalent atomic and partly ion wires ANB8–N

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The thinnest nanowires represent chains with one atom in cross section. The energy-band structures of ANB8–N chains are calculated using the linear augmented cylindrical wave method. The energy-band structures of covalent monoatomic chains of the fourth group elements are characterized by the σ(s), π+, and π bands, as well as the σ(p z )* band. The chains of C, Si, Ge, and Sn are the metallic ones. Owing to the cylindrical symmetry of the chains, the spin and the orbital motion of electrons interact in the chains, splitting the π bands, but each π+- and π band is doubly degenerate on the spin. The energy of spin–orbit splitting varies from 1.7 meV to 0.67 eV for the C and Sn chains, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ataca, C., Cahangirov, S., Durgun, E., Jang, Y.-R., and Ciraci, S., Structural, electronic, and magnetic properties of 3d transition metal monatomic chains: First-principles calculations, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 214413.

    Article  Google Scholar 

  2. Mokrousov, Y., Bihlmayer, G., Heinze, S., and Blügel, S., Giant magnetocrystalline anisotropies of 4d transitionmetal monowires, Phys. Rev. Lett., 2006, vol. 96, p. 147201.

    Article  CAS  Google Scholar 

  3. Zarechnaya, E.Yu., Skorodumova, N.V., Simak, S.I., Isaev, E.I., and Johansson, B., Theoretical study of linear monoatomic nanowires, dimer and bulk of Cu, Ag, Au, Ni, Pd and Pt, Compt. Mater. Sci., 2008, vol. 43, pp. 522–530.

    CAS  Google Scholar 

  4. Tsukagoshi, K., Alphenaar, B.W., and Ago, H., Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature, 1999, vol. 401, pp. 572–574.

    Article  CAS  Google Scholar 

  5. Gambardella, P., Dallmeyer, A., Maiti, K., Malagoli, M.C., Eberhardt, W., Kern, K., and Carbone, C., Ferromagnetism in one-dimensional monoatomic metal chains, Nature, 2002, vol. 416, pp. 301–304.

    Article  CAS  Google Scholar 

  6. Krusin-Elbaum, L., Newns, D.M., Zeng, H., Derycke, V., Sun, J.Z., and Sandstrom, R., Room-temperature ferromagnetic nanotubes controlled by electron or hole doping, Nature, 2004, vol. 431, pp. 672–676.

    Article  CAS  Google Scholar 

  7. Kizuka, T., Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 155401.

    Article  Google Scholar 

  8. Kizuka, T. and Monna, K., Atomic configuration, conductance, and tensile force of platinum wires of single atom width, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, p. 205406.

    Google Scholar 

  9. Shiota, T., Mares, A.I., Valkering, A.M.C., Oosterkamp, T.H., and van Ruitenbeek, J.M., Mechanical properties of Pt monoatomic chains, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 125411.

    Article  Google Scholar 

  10. Bettini, J., Sato, F., Coura, P.Z., Dantas, S.O., Galvão, D.S., and Ugarte, D., Nature Nanotechnol., 2006, vol. 1, pp. P. 182–185.

  11. Chen, I.-W.P., Fu, M.-D., Tseng, W.-H., Yu, J.-Y., Wu, S.-H., Ku, C.-J., Chen, C.-H., and Pemg, S.-M., Conductance and stochastic switching of ligand-supported linear chains of metal atoms, Angew. Chem., 2006, vol. 45, pp. 5814–5818.

    Article  CAS  Google Scholar 

  12. Chalifoux, W. and Tykwinski, R., Synthesis of polyynes to model the sp-carbon allotrope carbine, Nature Chem., 2010, vol. 2, pp. 967–971.

    Article  CAS  Google Scholar 

  13. Jin, C.H., Lan, H.P., Peng, L.M., Suenaga, K., and Iijima, S., Deriving carbon atomic chains from grapheme, Phys. Rev. Lett., 2009, vol. 102, p. 205501.

    Article  Google Scholar 

  14. Cretu, O., Botello-Mendez, A.R., Janowska, I.M., Pham-Huu, C., Charlier, J.-C., and Banhart, F., Electrical transport measured in atomic carbon chains, Nano Lett., 2013, vol. 13, pp. 3487–3493.

    Article  CAS  Google Scholar 

  15. Guan, L., Suenaga, K., Okubo, Sh., Okazaki, T., and Iijima, Sl., Metallic wires of lanthanum atoms inside carbon nanotubes, J. Am. Chem. Soc., 2008, vol. 130, pp. 2162–2163.

    Article  CAS  Google Scholar 

  16. Rodrigues, V., Bettini, J., Silva, P.C., and Ugarte, D., Evidence for spontaneous spin-polarized transport in magnetic nanowires, Phys. Rev. Lett., 2003, vol. 91, p. 096801.

    Article  Google Scholar 

  17. Zhao, X., Ando, Y., Liu, Y., Jinno, M., and Suzuki, T., Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube, Phys. Rev. Lett., 2003, vol. 90, p. 187401.

    Article  Google Scholar 

  18. Belcher, D.R., Radny, M.W., Schofield, S.R., Smith, P.V., and Warshkow, O., Guided self-assembly of metal atoms on silicon using organic-molecule templating, J. Am. Chem. Soc., 2012, vol. 134, pp. 15312–15317.

    Article  CAS  Google Scholar 

  19. Javorský, J., Setvín, M., Ošt’ádal, I., Sobotik, P., and Kotrla, M., Heterogeneous nuclration and adatom detachment at one-dimensional growth on In on Si (100)-2x1, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, p. 165424.

    Article  Google Scholar 

  20. Kocán, P., Jurczyszyn, L., Sobotík, P., and Ošt’ádal, I., Defects on the Si(100)-(2x1) surface: Anchoring sites of the surface polymerization reaction of In atoms, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 113301.

    Article  Google Scholar 

  21. Radny, M.W., Smith, P.V., and Jurczyszyn, L., Adsorption-enhanced reactivity of the In/Si(001) system, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, p. 085424.

    Article  Google Scholar 

  22. Yoon, H.S., Ryu, M.-A., and Lyo, I.-W., Initial growth of Pb on Si(001) at room temperature and low temperature, Surf. Sci., 2003, vol. 547, pp. 210–211.

    Article  CAS  Google Scholar 

  23. Miki, K., Bowler, D.R., Owen, J.H.G., Briggs, G.A.D., and Sakamoto, K., Atomically perfect bismuth lines on Si(001), Phys. Rev., B: Condens. Matter Mater. Phys., 1999, vol. 59, pp. 14868–14871.

    Article  CAS  Google Scholar 

  24. Zhu, Y., Zhou, W., Wang, S., Ji, T., Hou, X., and Cai, Q., From nanowires to nanoislands: Morphological evolutions of erbium silicide nanostructures formed on the vicinal Si (001) surface, Appl. Phys., 2006, vol. 100, p. 114312.

    Article  Google Scholar 

  25. Critchley, K., Khanal, B.P., Górzny, M., Vigderman, L., Evans, S.D., Zubarev, E.R., and Kotov, N.A., Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface, Adv. Mater., 2010, vol. 22, pp. 2338–2340.

    Article  CAS  Google Scholar 

  26. Delin, A., Tosatti, E., and Weht, R.A., Magnetism in atomic-size palladium contacts and nanowires, Phys. Rev. Lett., 2004, vol. 92, p. 057201.

    Article  CAS  Google Scholar 

  27. Tongay, S., Durgun, E., and Ciraci, S., Atomic strings of group IV, III–V, and II–VI elements, Appl. Phys. Lett., 2004, vol. 85, pp. 6179–6181.

    Article  CAS  Google Scholar 

  28. Senger, R.T., Tongay, S., Durgun, E., and Ciraci, S., Atomic chains of group-IV elements and III—V and II—VI binary compounds studied by a first-principles pseudopotential method, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, pp. 075419.

    Article  Google Scholar 

  29. Abdurahman, A., Shukla, A., and Dolg, M., Ab initio many-body calculations on infinite carbon and boronnitrogen chains, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, p. 115106.

    Article  Google Scholar 

  30. Min, H., Hill, J.E., Sinitsyn, N.A., Sahu, B.R., Kleinman, L., and MacDonald, A.H., Intrinsic and Rashba spin-orbit interactions in grapheme sheets, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, p. 165310.

    Article  Google Scholar 

  31. D’yachkov, P.N. and Zaluev, V.A., Spin-orbit gaps in carbines, J. Phys. Chem., vol. 118, pp. 2799–2803.

  32. Augmented Waves for Nanomaterials, Ed. by Nalwa, H.S., in Encyclopedia of Nanoscience and Nanotechnology, Valencia, CA; Am. Scient., 2004, vol. 1, pp. 191–212.

  33. D’yachkov, P.N. and Makaev, D.V., Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, p. 195411.

    Article  Google Scholar 

  34. D’yachkov, P.N., Kutlubaev, D.Z., and Makaev, D.V., Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, p. 035426.

    Article  Google Scholar 

  35. Conklin, J.B., Johnson, L.E., and Pratt, G.W., Energy bands in PbTe, Phys. Rev., 1965, vol. 137, pp. A1282–A1294.

    Article  Google Scholar 

  36. Kuemmeth, F., Ilani, S., Ralph, D.C., and McEuen, P.L., Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature, 2008, vol. 452, pp. 448–452.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bochkov.

Additional information

Original Russian Text © I.A. Bochkov, P.N. Dyachkov, 2015, published in Materialovedenie, 2015, No. 12, pp. 3–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkov, I.A., Dyachkov, P.N. Electronic energy-band structures of covalent atomic and partly ion wires ANB8–N . Inorg. Mater. Appl. Res. 7, 520–524 (2016). https://doi.org/10.1134/S2075113316040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316040055

Keywords

Navigation