Advertisement

Inorganic Materials: Applied Research

, Volume 7, Issue 4, pp 520–524 | Cite as

Electronic energy-band structures of covalent atomic and partly ion wires A N B8–N

  • I. A. Bochkov
  • P. N. Dyachkov
Article

Abstract

The thinnest nanowires represent chains with one atom in cross section. The energy-band structures of A N B8–N chains are calculated using the linear augmented cylindrical wave method. The energy-band structures of covalent monoatomic chains of the fourth group elements are characterized by the σ(s), π+, and π bands, as well as the σ(p z )* band. The chains of C, Si, Ge, and Sn are the metallic ones. Owing to the cylindrical symmetry of the chains, the spin and the orbital motion of electrons interact in the chains, splitting the π bands, but each π+- and π band is doubly degenerate on the spin. The energy of spin–orbit splitting varies from 1.7 meV to 0.67 eV for the C and Sn chains, respectively.

Keywords

ion nanowires energy-band structure linear augmented cylindrical wave method nanotubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ataca, C., Cahangirov, S., Durgun, E., Jang, Y.-R., and Ciraci, S., Structural, electronic, and magnetic properties of 3d transition metal monatomic chains: First-principles calculations, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 214413.CrossRefGoogle Scholar
  2. 2.
    Mokrousov, Y., Bihlmayer, G., Heinze, S., and Blügel, S., Giant magnetocrystalline anisotropies of 4d transitionmetal monowires, Phys. Rev. Lett., 2006, vol. 96, p. 147201.CrossRefGoogle Scholar
  3. 3.
    Zarechnaya, E.Yu., Skorodumova, N.V., Simak, S.I., Isaev, E.I., and Johansson, B., Theoretical study of linear monoatomic nanowires, dimer and bulk of Cu, Ag, Au, Ni, Pd and Pt, Compt. Mater. Sci., 2008, vol. 43, pp. 522–530.Google Scholar
  4. 4.
    Tsukagoshi, K., Alphenaar, B.W., and Ago, H., Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature, 1999, vol. 401, pp. 572–574.CrossRefGoogle Scholar
  5. 5.
    Gambardella, P., Dallmeyer, A., Maiti, K., Malagoli, M.C., Eberhardt, W., Kern, K., and Carbone, C., Ferromagnetism in one-dimensional monoatomic metal chains, Nature, 2002, vol. 416, pp. 301–304.CrossRefGoogle Scholar
  6. 6.
    Krusin-Elbaum, L., Newns, D.M., Zeng, H., Derycke, V., Sun, J.Z., and Sandstrom, R., Room-temperature ferromagnetic nanotubes controlled by electron or hole doping, Nature, 2004, vol. 431, pp. 672–676.CrossRefGoogle Scholar
  7. 7.
    Kizuka, T., Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 155401.CrossRefGoogle Scholar
  8. 8.
    Kizuka, T. and Monna, K., Atomic configuration, conductance, and tensile force of platinum wires of single atom width, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, p. 205406.Google Scholar
  9. 9.
    Shiota, T., Mares, A.I., Valkering, A.M.C., Oosterkamp, T.H., and van Ruitenbeek, J.M., Mechanical properties of Pt monoatomic chains, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 125411.CrossRefGoogle Scholar
  10. 10.
    Bettini, J., Sato, F., Coura, P.Z., Dantas, S.O., Galvão, D.S., and Ugarte, D., Nature Nanotechnol., 2006, vol. 1, pp. P. 182–185.Google Scholar
  11. 11.
    Chen, I.-W.P., Fu, M.-D., Tseng, W.-H., Yu, J.-Y., Wu, S.-H., Ku, C.-J., Chen, C.-H., and Pemg, S.-M., Conductance and stochastic switching of ligand-supported linear chains of metal atoms, Angew. Chem., 2006, vol. 45, pp. 5814–5818.CrossRefGoogle Scholar
  12. 12.
    Chalifoux, W. and Tykwinski, R., Synthesis of polyynes to model the sp-carbon allotrope carbine, Nature Chem., 2010, vol. 2, pp. 967–971.CrossRefGoogle Scholar
  13. 13.
    Jin, C.H., Lan, H.P., Peng, L.M., Suenaga, K., and Iijima, S., Deriving carbon atomic chains from grapheme, Phys. Rev. Lett., 2009, vol. 102, p. 205501.CrossRefGoogle Scholar
  14. 14.
    Cretu, O., Botello-Mendez, A.R., Janowska, I.M., Pham-Huu, C., Charlier, J.-C., and Banhart, F., Electrical transport measured in atomic carbon chains, Nano Lett., 2013, vol. 13, pp. 3487–3493.CrossRefGoogle Scholar
  15. 15.
    Guan, L., Suenaga, K., Okubo, Sh., Okazaki, T., and Iijima, Sl., Metallic wires of lanthanum atoms inside carbon nanotubes, J. Am. Chem. Soc., 2008, vol. 130, pp. 2162–2163.CrossRefGoogle Scholar
  16. 16.
    Rodrigues, V., Bettini, J., Silva, P.C., and Ugarte, D., Evidence for spontaneous spin-polarized transport in magnetic nanowires, Phys. Rev. Lett., 2003, vol. 91, p. 096801.CrossRefGoogle Scholar
  17. 17.
    Zhao, X., Ando, Y., Liu, Y., Jinno, M., and Suzuki, T., Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube, Phys. Rev. Lett., 2003, vol. 90, p. 187401.CrossRefGoogle Scholar
  18. 18.
    Belcher, D.R., Radny, M.W., Schofield, S.R., Smith, P.V., and Warshkow, O., Guided self-assembly of metal atoms on silicon using organic-molecule templating, J. Am. Chem. Soc., 2012, vol. 134, pp. 15312–15317.CrossRefGoogle Scholar
  19. 19.
    Javorský, J., Setvín, M., Ošt’ádal, I., Sobotik, P., and Kotrla, M., Heterogeneous nuclration and adatom detachment at one-dimensional growth on In on Si (100)-2x1, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, p. 165424.CrossRefGoogle Scholar
  20. 20.
    Kocán, P., Jurczyszyn, L., Sobotík, P., and Ošt’ádal, I., Defects on the Si(100)-(2x1) surface: Anchoring sites of the surface polymerization reaction of In atoms, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, p. 113301.CrossRefGoogle Scholar
  21. 21.
    Radny, M.W., Smith, P.V., and Jurczyszyn, L., Adsorption-enhanced reactivity of the In/Si(001) system, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, p. 085424.CrossRefGoogle Scholar
  22. 22.
    Yoon, H.S., Ryu, M.-A., and Lyo, I.-W., Initial growth of Pb on Si(001) at room temperature and low temperature, Surf. Sci., 2003, vol. 547, pp. 210–211.CrossRefGoogle Scholar
  23. 23.
    Miki, K., Bowler, D.R., Owen, J.H.G., Briggs, G.A.D., and Sakamoto, K., Atomically perfect bismuth lines on Si(001), Phys. Rev., B: Condens. Matter Mater. Phys., 1999, vol. 59, pp. 14868–14871.CrossRefGoogle Scholar
  24. 24.
    Zhu, Y., Zhou, W., Wang, S., Ji, T., Hou, X., and Cai, Q., From nanowires to nanoislands: Morphological evolutions of erbium silicide nanostructures formed on the vicinal Si (001) surface, Appl. Phys., 2006, vol. 100, p. 114312.CrossRefGoogle Scholar
  25. 25.
    Critchley, K., Khanal, B.P., Górzny, M., Vigderman, L., Evans, S.D., Zubarev, E.R., and Kotov, N.A., Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface, Adv. Mater., 2010, vol. 22, pp. 2338–2340.CrossRefGoogle Scholar
  26. 26.
    Delin, A., Tosatti, E., and Weht, R.A., Magnetism in atomic-size palladium contacts and nanowires, Phys. Rev. Lett., 2004, vol. 92, p. 057201.CrossRefGoogle Scholar
  27. 27.
    Tongay, S., Durgun, E., and Ciraci, S., Atomic strings of group IV, III–V, and II–VI elements, Appl. Phys. Lett., 2004, vol. 85, pp. 6179–6181.CrossRefGoogle Scholar
  28. 28.
    Senger, R.T., Tongay, S., Durgun, E., and Ciraci, S., Atomic chains of group-IV elements and III—V and II—VI binary compounds studied by a first-principles pseudopotential method, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, pp. 075419.CrossRefGoogle Scholar
  29. 29.
    Abdurahman, A., Shukla, A., and Dolg, M., Ab initio many-body calculations on infinite carbon and boronnitrogen chains, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, p. 115106.CrossRefGoogle Scholar
  30. 30.
    Min, H., Hill, J.E., Sinitsyn, N.A., Sahu, B.R., Kleinman, L., and MacDonald, A.H., Intrinsic and Rashba spin-orbit interactions in grapheme sheets, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, p. 165310.CrossRefGoogle Scholar
  31. 31.
    D’yachkov, P.N. and Zaluev, V.A., Spin-orbit gaps in carbines, J. Phys. Chem., vol. 118, pp. 2799–2803.Google Scholar
  32. 32.
    Augmented Waves for Nanomaterials, Ed. by Nalwa, H.S., in Encyclopedia of Nanoscience and Nanotechnology, Valencia, CA; Am. Scient., 2004, vol. 1, pp. 191–212.Google Scholar
  33. 33.
    D’yachkov, P.N. and Makaev, D.V., Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, p. 195411.CrossRefGoogle Scholar
  34. 34.
    D’yachkov, P.N., Kutlubaev, D.Z., and Makaev, D.V., Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, p. 035426.CrossRefGoogle Scholar
  35. 35.
    Conklin, J.B., Johnson, L.E., and Pratt, G.W., Energy bands in PbTe, Phys. Rev., 1965, vol. 137, pp. A1282–A1294.CrossRefGoogle Scholar
  36. 36.
    Kuemmeth, F., Ilani, S., Ralph, D.C., and McEuen, P.L., Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature, 2008, vol. 452, pp. 448–452.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Ryazan State Radio Engineering UniversityRyazanRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations