Inorganic Materials: Applied Research

, Volume 7, Issue 3, pp 419–424 | Cite as

Production of superhard corundum under spark-plasma sintering of aluminum oxide nanopowders

  • A. G. Zholnin
  • I. V. Kovaleva
  • E. G. Grigoryev
  • E. A. Olevsky
New Methods of Treatment and Production of Materials with Required Properties


In the process of optimization of the conditions of spark-plasma sintering of aluminum oxide powders, the repeated nonuniform distribution of microhardness over the surface of the sintered pellets is ascertained. The microhardness in the volume of the pellets was significantly higher (up to 35 GPa) than that on its surface. SEM microstructure investigations on the cleaved surface of the compact show the presence of zones with an unusual structure in the central regions of the sample. The structure of these zones is composed of randomly oriented flat crystals with the longitudinal size of up to 40 μm. Cavities between the long crystals are filled with small grains of 0.3–0.8 μm in size. The results of microhardness measurements indicate that the zones with anomalous structure have superhigh microhardness values.


spark-plasma sintering powder materials alumina microhardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bukaemsky, A.A., Beloshapko, A.G., and Puzyr, A.P., Physicochemical properties of Al2O3 powder produced by explosive synthesis, Combustion, Explosion, and Shock Waves, 2000, vol. 36, pp. 660–666.CrossRefGoogle Scholar
  2. 2.
    Fedorchenko, I.M., Frantsevich, I.N., Radomyselsky, I.D., et al., Poroshkovaya metallurgiya. Materialy, technologiya, svoistva, oblasti primeneniya. Spravochnik (Powder Metallurgy. Materials, Technologies, Properties, Applications. Reference Book, Kiev: Naukova Dumka, 1985.Google Scholar
  3. 3.
    Rodriguez-Suarez, T., Daz, L.A., Torrecillas, R., Lopez-Esteban, S., Tuan, W.H., and Nygren, M., Alumina/tungsten nanocomposites obtained by spark plasma sintering, Composit. Sci. Technol., 2009, vol. 69, pp. 2467–2473.CrossRefGoogle Scholar
  4. 4.
    Bartolomé, A., de Aza, Martín, A., Pastor, J., Llorca, J., Torrecillas, R., and Bruno, G., Alumina/zirconia micro/nanocomposites: A new material for biomedical applications with superior sliding wear resistance, J. Am. Ceram. Soc., 2007, vol. 90, pp. 3177–3184.CrossRefGoogle Scholar
  5. 5.
    Ivanov, V.V., Paranin, S.N., Khrustov, V.R., Medvedev, A.I., Shtol’ts, A.K., Ivanova, O.F., and Nozdrin, A.A., Processing of nanostructured oxide ceramics with magnetic pulsed compaction technique, Key Eng. Mater., 2002, vol. 206–213, pp. 377–380.Google Scholar
  6. 6.
    Kaygorodov, A., Rhee, C.K., Kim, W.W., Ivanov, V., Paranin S., Spirin A., Khrustov, V., Nozzles from alumina ceramics with submicron structure fabricated by radial pulsed compaction, in: Progress in Powder Metallurgy. Eds. Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun, Yong-Seog Kim. Mater. Sci. Forum, 2007, vols. 534–536, pp.1053–1056; doi 10.4028/ Scholar
  7. 7.
    Liang A. Xue and I-Wei Chen, Low-temperature sintering of alumina with liquid-forming additives, Commun. Amer. Ceram. Soc., 1991, vol. 74, pp. 2011–2013.CrossRefGoogle Scholar
  8. 8.
    Nomoev, A.V., Supermicrohardness in ceramics based on nanodisperse alumina powders with additives of magnesia and silica nanopowders, Tech. Phys. Lett., 2010, vol. 36, pp. 994–997.CrossRefGoogle Scholar
  9. 9.
    Alimov M.I., Burlakova M.A., Elmanov G.N., Kalin, B.A., Kalashnirov, A.N., Nechaev, V.V., Polyanskii, A.A., Chernov, I.I., Shtrombakh, Ya.I., and Shul’ga, A.V., Fiz. Materialoved. (Physical Materials Sci. Vol. 5: Materials with Required Properties), Kalin, B.A., Ed., Moscow: MEPhI, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. G. Zholnin
    • 1
  • I. V. Kovaleva
    • 1
  • E. G. Grigoryev
    • 1
  • E. A. Olevsky
    • 1
  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations