Inorganic Materials: Applied Research

, Volume 7, Issue 3, pp 444–452 | Cite as

Oxidation state and local environment of iron and hydrolytic stability of multicomponent aluminum-iron-phosphate glasses for immobilization of high-level waste

  • Ya. S. Glazkova
  • S. N. Kalmykov
  • I. A. Presnyakov
  • A. V. Sobolev
  • O. I. Stefanovskaya
  • S. V. Stefanovsky
  • M. B. Remizov
  • P. V. Kozlov
  • R. A. Makarovsky
New Methods of Treatment and Production of Materials with Required Properties
  • 21 Downloads

Abstract

The nuclear gamma resonance (Mössbauer effect) is used to determine the oxidation state and the coordination environment of iron ions in model glasses that simulate vitrified high-level waste. A major fraction of iron is present in the samples with relatively low contents of transition metal oxides as Fe(III) in the octahedral oxygen environment. When the content of transition metal oxides is high, iron is distributed between a glassy phase (10–15%) and a crystalline phase (85–90%). Iron in the first phase exists predominantly as Fe(III) in the octahedral environment, while in the second phase it is present as Fe(II) and Fe(III) ions as well in a form of octahedrally coordinated and participating ions in a “fast” electron exchange proceeding as mFe3+ + nFe2+mFe2+ + nFe3+. The leach rate of Cs ions from boron-free glasses amounts to ~1 × 10–5 g/(cm2 day) and lower, and the value for Fe is three orders of magnitude lower. Upon annealing, both the rate and the degree of leaching increase by several times, while the boron-containing glasses exhibit lower hydrolytic durability. Both the rate and the degree of leaching of iron change insignificantly after annealing.

Keywords

aluminum-iron phosphate glasses high-level waste hydrolytic stability iron X-ray phase analysis oxidation state nuclear gamma resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stefanovsky, S.V., Yudintsev, S.V., Giere, R., and Lumpkin, G.R., Nuclear waste forms, in: Energy, Waste and the Environment: A Geological Perspective Geological Society, Special Publication, London, 2004, vol. 236, pp. 37–63.Google Scholar
  2. 2.
    Lin, Y., Zhang, Y., Huang, W., Lu, K., and Zhao, Y., Structural study of iron in phosphate glasses, J. NonCryst. Solids, 1989, vol. 112, pp. 136–141.CrossRefGoogle Scholar
  3. 3.
    Wang, G., Wang, Y., and Jin, B., Structural properties of sodium–iron phosphate glasses, Proc. SPIE Conf., 1994, vol. 2287, pp. 214–225.CrossRefGoogle Scholar
  4. 4.
    Yu, X., Day, D.E., Long, G.L., and Brow, R.K., Properties and structure of sodium-iron phosphate glasses, J. Non-Cryst. Solids, 1997, vol. 215, pp. 21–31.CrossRefGoogle Scholar
  5. 5.
    Booth, C.H., Allen, P.G., Bucher, J.J., Edelstein, N.M., Shuh, D.K., Marasinghe, G.K., Karabulut, M., Ray, C.S., and Day, D.E., Oxygen and phosphorus coordination around iron in crystalline ferrous pyrophosphate and ironphosphate glasses with UO2 or Na2O, J. Mater. Res., 1999, vol. 14, pp. 2628–2639.CrossRefGoogle Scholar
  6. 6.
    Karabulut, M., Marasinghe, G.K., Ray, C.S., Day, D.E., Ozturk, O., and Waddill, G.D., X-ray photoelectron and Mössbauer spectroscopic studies of iron phosphate glasses containing U, Cs and Bi, J. NonCryst. Solids, 1999, vol. 249, pp. 106–116.CrossRefGoogle Scholar
  7. 7.
    Marasinghe, G.K., Karabulut, M., Ray, C.S., Day, D.E., Shuh, D.K., Allen, P.G., Saboungi, M.L., Grimsditch, M., and Haeffner, D., Properties and structure of vitrified iron phosphate nuclear waste forms, J. Non-Cryst. Solids, 2000, vol. 263–264, pp. 146–154.CrossRefGoogle Scholar
  8. 8.
    Karabulut, M., Melnik, E., Stefan, R., Marasinghe, G.K., Ray, C.S., Kurkjian, C.R., and Day, D.E., Mechanical and structural properties of phosphate glasses, J. Non-Cryst. Solids, 2001, vol. 288, pp. 8–17.CrossRefGoogle Scholar
  9. 9.
    Mogus–Milankovic, A., Gajovic, A., Santic, A., and Day, D.E., Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3, J. Non-Cryst. Solids, 2001, vol. 289, pp. 204–213.CrossRefGoogle Scholar
  10. 10.
    Hirose, K., Honma, T., Doi, Y., Hinatsu, Y., and Komatsu, T., Mössbauer analysis of Fe ion state in lithium iron phosphate glasses and their glass–ceramics with olivinetype LiFePO4 crystals, Solid State Commun., 2008, vol. 146, pp. 273–277.CrossRefGoogle Scholar
  11. 11.
    Matsnev, M.E. and Rusakov, V.S., SpectrRelax: An application for Mössbauer spectra modeling and fitting, AIP Conf. Proc., 2012, vol. 1489, pp. 178–185.CrossRefGoogle Scholar
  12. 12.
    Menil, F., Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T–X(→Fe) (where X is O or F and T any element with a formal positive charge), J. Phys. Chem. Solids, 1985, vol. 46, pp. 763–789.CrossRefGoogle Scholar
  13. 13.
    Glazkova, I.S., Kalmykov, S.N., Sobolev, A.V., Presniakov, I.A., Stefanovskaya, O.I., Stefanovsky, S.V., and Myasoedov, B.F., Oxidation state and local environment of iron in multicomponent aluminoborosilicate glasses, Dokl. Phys. Chem., 2015, vol. 460, no. 2, pp. 27–32.CrossRefGoogle Scholar
  14. 14.
    Vandenberghe, R.E. and de Grove, E., Mössbauer effect studies of oxidic spinels, in Mössbauer Spectroscopy Applied to Inorganic Chemistry New York: Plenum, 1989, vol. 3, pp. 59–182.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Ya. S. Glazkova
    • 1
  • S. N. Kalmykov
    • 1
    • 2
  • I. A. Presnyakov
    • 1
  • A. V. Sobolev
    • 1
  • O. I. Stefanovskaya
    • 1
  • S. V. Stefanovsky
    • 3
  • M. B. Remizov
    • 4
  • P. V. Kozlov
    • 4
  • R. A. Makarovsky
    • 4
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academó of SciencesMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  4. 4.Mayak Production AssociationOzerskRussia

Personalised recommendations