Advertisement

Inorganic Materials: Applied Research

, Volume 7, Issue 2, pp 163–169 | Cite as

Reinforcement of Al2O3–MgO composite materials by multiwalled carbon nanotubes

  • E. V. Zharikov
  • T. T. T. Duong
  • P. P. Faikov
  • N. A. Popova
  • D. M. Sovyk
Physico-Chemical Principles of Materials Development

Abstract

Composite materials based on the Al2O3–MgO system reinforced with multiwalled carbon nanotubes (MWCNTs) were fabricated by vacuum sintering and hot pressing. The ceramic matrices were represented by corundum Al2O3 ceramic with the addition of 0.25 wt % MgO and magnesium aluminate spinel MgAl2O4. The prepared composites based on corundum and magnesium aluminate spinel containing MWCNTs were investigated by optical microscopy and scanning electron microscopy, and their microhardness and fracture toughness were studied. The samples are a densely sintered matrix with the average crystallite size of 3–5 μm with MWCNTs distributed uniformly on grain boundaries forming a reticular carcass. The samples of the Al2O3–MgO composite with 8 vol % MWCNTs demonstrated the flexural strength and fracture toughness two times higher as compared to the initial ceramic material (Al2O3 + 0.25% MgO).

Keywords

composite MWCNTs vacuum sintering mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yakobson, B.I. and Avouris, P., Mechanical properties of carbon nanotubes, Topics Appl. Phys., 2001, vol. 80, pp. 287–327.CrossRefGoogle Scholar
  2. 2.
    Nardelli, M.B., Yakobson, B.I., and Bernholc, J., Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett., 1998, vol. 81, no. 21, pp. 4656–4659.CrossRefGoogle Scholar
  3. 3.
    Belytschko, T., Xiao, S.P., Schatz, G.C., and Ruoff, R.S., Atomistic simulations of nanotube fracture. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, no. 23, p. 235430.CrossRefGoogle Scholar
  4. 4.
    Qian, D., Dickey, E.C., Andrews, R., and Rantell, T., Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites, Appl. Phys. Lett., 2000, vol. 76, no. 20, pp. 2868–2870.CrossRefGoogle Scholar
  5. 5.
    Chu, K., Jia, C.C., Li, W.S., and Wang, P., Mechanical and electrical properties of carbon-nanotube-reinforced Cu-Ti alloy matrix composites, Phys. Status Sol. (A), 2013, vol. 210, no. 3, pp. 594–599.CrossRefGoogle Scholar
  6. 6.
    Yamamoto, G., Omori, M., Hashida, T., and Kimura, H., A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties, Nanotechnologies, 2008, vol. 19, no. 31, p. 315708.CrossRefGoogle Scholar
  7. 7.
    Ueda, N., Yamakami, T., Yamaguchi, T., Kitajima, K., Usui, Y., Aoki, K., Nakanishi, T., Miyaji, F., Endo, M., Saito, N., and Taruta, S., Fabrication and mechanical properties of high-dispersion-treated carbon nanofiber/alumina composites, J. Ceram. Soc. Jpn., 2010, vol. 118, no. 1381, pp. 847–854.CrossRefGoogle Scholar
  8. 8.
    Zhang, T., Kumari, L., Du, G.H., Li, W.Z, Wang, Q.W., Balani, K., and Agarwal, A., Mechanical properties of carbon nanotubealumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering. Composites, 2009, vol. 40, no. 1, pp. 86–93.CrossRefGoogle Scholar
  9. 9.
    Ueda, N., Yamakami, T., Yamaguchi, T., Kitajima, K., Usui, Y., Aoki, K., Endo, M., Saito, N., and Taruta, S., Microstructure development and fracture toughness of acid-treated carbon nanofibers/alumina composites, J. Ceram. Soc. Jpn., 2012, vol. 120, no. 1408, pp. 560–568.CrossRefGoogle Scholar
  10. 10.
    Ahmad, I., Unwin, M., Cao, H., Chen, H., Zhao, H., Kennedy, A., and Zhu, Y.Q., Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations, Compos. Sci. Technol., 2010, vol. 70, no. 8, pp. 1199–1206.CrossRefGoogle Scholar
  11. 11.
    Maensiri, S., Laokul, P., Klinkaewnarong, J., and Amornkitbamrung, V., Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties, Mater. Sci. Eng. A, 2007, vol. 447, no. 1, pp. 44–50.CrossRefGoogle Scholar
  12. 12.
    Park, T.J., Banerjee, S., Hemjaj-Benny, T., and Wong, S., Purification strategies and purity visualization techniques for single-walled carbon nanotubes, J. Mater. Chem., 2006, vol. 16, pp. 141–154.CrossRefGoogle Scholar
  13. 13.
    Hirota, K., Takaura, Y., Kato, M., and Miyamoto, Y., Fabrication of carbon nanofiber (CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties, J. Mater. Sci., 2007, vol. 42, no. 13, pp. 4792–4800.CrossRefGoogle Scholar
  14. 14.
    Hilding, J., Grulke, E.A., Zhang, Z.G., and Lockwood, F., Dispersion of carbon nanotubes in liquids, J. Dispers. Sci. Technol., 2003, vol. 24, no. 1, pp. 1–41.CrossRefGoogle Scholar
  15. 15.
    Hamon, M.A., Chen, J., Hu, H., Chen, Y., Itkis, M.E., Rao, A.M., Eklund, P.C., and Haddon, R.C., Dissolution of single-walled carbon nanotubes, Adv. Mater., 1999, vol. 11, no. 10, pp. 834–840.CrossRefGoogle Scholar
  16. 16.
    Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E., and Tour, J.M., Dissolution of small diameter single-wall carbon nanotubes in organic solvents, Chem. Commun., 2001, no. 2, pp. 193–194.CrossRefGoogle Scholar
  17. 17.
    Lu, K.L., Lago, R.M., Chen, Y.K., Green, M.L.H., Harris, P.J.F., and Tsang, S.C., Mechanical damage of carbon nanotubes by ultrasound, Carbon, 1996, vol. 34, no. 6, pp. 814–816.CrossRefGoogle Scholar
  18. 18.
    Wang, B.M., Yuan, Z., Guo, Z.Q., Ma, H.N., and Lai, C.F., Controlling the optimum surfactants concentrations for dispersing carbon nanofibers in aqueous solution, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 13, pp. 2253–2259.CrossRefGoogle Scholar
  19. 19.
    Zharikov, E.V., Zaramenskikh, K.S., Popova, N.A., Faikov, P.P., Iskhakova, L.D., Gerke, M.N., Kutrovskaya, S.V., and Nogtev, D.S., Carbon nanotube reinforced corundum-based composite material, Glass Ceram., 2011, vol. 68, nos. 3–4, pp. 80–84.CrossRefGoogle Scholar
  20. 20.
    Fedosova, N.A., Faikov, P.P., Popova, N.A., Duong, T.T.T., Zaramenskikh, K.S., Sovyk, D.N., Koltsova, E.M., and Zharikov, E.V., Influence of the nature of carbon nanotubes on the structure and strength of ceramic composites, Glass Ceram., 2014, vol. 71, nos. 3–4, pp. 128–131.CrossRefGoogle Scholar
  21. 21.
    Ahmad, I., Cao, H., Chen, H., Zhao, H., Kennedy, A., and Zhu, Y.Q., Carbon nanotube toughened aluminium oxide nanocomposite, J. Eur. Ceram. Soc., 2010, vol. 30, no. 4, pp. 865–873.CrossRefGoogle Scholar
  22. 22.
    Zhang, S.C., Fahrenholtz, W.G., Hilmas, G.E., and Yadlowsky, E.J., Pressureless sintering of carbon nanotube—Al2O3 composites, J. Eur. Ceram. Soc., 2010, vol. 30, no. 6, pp. 1373–1380.CrossRefGoogle Scholar
  23. 23.
    Sarkar, S. and Das, P.K., Microstructure and physico–mechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceram. Int., 2012, vol. 38, no. 1, pp. 423–432.CrossRefGoogle Scholar
  24. 24.
    Monahan, R.D. and Halloran, J.W., Single-crystal boundary migration in hot-pressed aluminum oxide, J. Am. Ceram. Soc., 1979, vol. 62, nos. 11–12, pp. 564–567.CrossRefGoogle Scholar
  25. 25.
    Bennison, S.J. and Harmer, M.P., Grain growth kinetics for alumina in the absence of a liquid phase, J. Am. Ceram. Soc., 1985, vol. 68, no. 1, pp. 22–24.CrossRefGoogle Scholar
  26. 26.
    Bateman, C.A., Bennison, S.J., and Harmer, M.P., Mechanism for the role of magnesia in the sintering of alumina containing small amounts of a liquid phase, J. Am. Ceram. Soc., 1989, vol. 72, no. 7, pp. 1241–1244.CrossRefGoogle Scholar
  27. 27.
    Gavrilov, Yu.V., Grishin, D.A., Jiang, H., Digurov, N.G., Nasibulin, A.G., and Kauppinen, E.I., The synthesis of few—walled carbon nanotubes by the catalytic pyrolisis of methane and the kinetics of their accumulation, Russ. J. Phys. Chem. A, 2007, vol. 81, no. 9, pp. 1502–1506.CrossRefGoogle Scholar
  28. 28.
    Silva, R.P., Almeida, V.O., Machado, G.B., Benvenutti, E.V., Costa, T.M.H., and Gallas, M.R., Surfactant-based dispersant for multiwall carbon tubes to prepare ceramic composites by a sol-gel method, Langmuir, 2012, vol. 28, no. 2, pp. 1447–1452.CrossRefGoogle Scholar
  29. 29.
    Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., and Schmidt, J., Individually suspended singlewalled carbon nanotubes in various surfactants, Nano Lett., 2003, vol. 3, no. 10, pp. 1379–1382.CrossRefGoogle Scholar
  30. 30.
    Strano, M.S., Moore, V.C., Miller, M.K., Allen, M.J., Haroz, E.H., and Kittrell, C., The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes, J. Nanosci. Nanotechnol., 2003, vol. 3, nos. 1–2, pp. 81–86.CrossRefGoogle Scholar
  31. 31.
    Fan, J., Zhao, D., Xu, Z., and Wu, M., Preparation of MWNTs/Al2O3 composites and their mechanical and electrical properties, Sci. in China Series E: Technol. Sci., 2005, vol. 48, no. 6, pp. 622–631.CrossRefGoogle Scholar
  32. 32.
    Yamamoto, G., Shirasu, K., Nozaka, Y., Nakamura, T., and Hashida, T., Development of pressureless sintering method for carbon nanotube/alumina composites and their microstructure-property relationships, J. Solid Mechan. Mater. Eng., 2013, vol. 7, no. 3, pp. 394–402.CrossRefGoogle Scholar
  33. 33.
    Zhang, S.C., Fahrenholtz, W.G., Hilmas, G.E., and Yadlowsky, E.J., Pressureless sintering of carbon nanotube—Al2O3 composites, J. Eur. Ceram. Soc., 2010, vol. 30, no. 6, pp. 1373–1380.CrossRefGoogle Scholar
  34. 34.
    Sarkar, S. and Das, P.K., Microstructure and physico–mechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceram. Int., 2012, vol. 38, no. 1, pp. 423–432.CrossRefGoogle Scholar
  35. 35.
    Woodman, R.H., Klotz, B.R., and Dowding, R.J., Evaluation of a dry ball-milling technique as a method for mixing boron carbide and carbon nanotube powder, Ceram. Int., 2005, vol. 31, no. 5, pp. 765–768.CrossRefGoogle Scholar
  36. 36.
    Ning, J.W., Zhang, J.J., Pan, Y.B., and Guo, J.K., Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube, Mater. Sci. Eng. A, 2003, vol. 357, nos. 1–2, pp. 392–396.CrossRefGoogle Scholar
  37. 37.
    Tjong, S.C., Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices, Wiley–VCH, 2009.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations