Inorganic Materials: Applied Research

, Volume 7, Issue 2, pp 177–186 | Cite as

Thermoelectric figure of merit and magnetic field production abilities of “natural” PbBi2(Te1 − x Se x )4 + δ and PbBi4(Te1 − x Se x )7 + δ nanostructures

  • E. S. Avilov
  • M. A. Korzhuev
  • M. A. Kretova
  • A. B. Michajlova
Materials of Electronic


Layered crystals PbBi2(Te1 − x Se x )4 + δ and PbBi4(Te1 − x Se x )7 + δ with the stoichiometry deviation toward the excess of chalcogenides (x = 0–0.7; δ = 0–0.1) are synthesized. The obtained compounds are attributed to “natural” Bi2Te3-type nanostructures with changed nanoidentity parameters (ξ1 is the layer package thickness, and ξ2 = c is the increased lattice period along the trigonal crystal axis). A change in the parameters ξ1 and ξ2 amplifies the phonon scattering in the samples, causing low thermal conductivity of the crystal lattice of alloys, which is κph = (4.3–7.2) × 10−3 W/(cm K) close to the thermal conductivity of amorphous materials. The presence of finely divided precipitations of the additional phases (δ > 0) favors a decrease in the value of κph. In this case, the lower mobility of electrons μ favors a decrease in the maximum figure of merit values (Z = α2σ/κ) for the samples in comparison with PbTe and Bi2Te3 alloys. At the same time, the low values of κph and Z lead to an increase in the magnetic field production ability of alloys, which attain high values of X = Y/(1 + ZT) > 4–5 (here, Y = ασ/κ). No features of the belonging of the studied materials to a class of 3D “topological insulators” (dielectrics in the bulk and metals on the surface) are found over the temperature range of 77–700 K.


thermoelectric materials layered crystals “natural” nanostructures thermoelectric figure of merit magnetic field production ability topological insulator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sootsman, J.R., Xhung, D.Y., and Kanatzidis, M.G., New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed, 2009, vol. 47, pp. 8616–8639.CrossRefGoogle Scholar
  2. 2.
    Macia-Barber, E., Thermoelectric Materials. Advances and Applications, Boca Raton, FL: CRC, 2015.Google Scholar
  3. 3.
    Korzhuev, M.A., Thermoelectric nanostructures: Pros and cons, Thermoelectricity, 2013, no. 5, pp. 10–21.Google Scholar
  4. 4.
    Korzhuev, M.A. and Katin, I.V., Nano-like effects in crystalline thermoelectric materials at high temperatures, in Physics, Chemistry and Application of Nanostructures, Borisenko, V.E., Ed., New Jersey: Word Scientific, 2013, pp. 569–572.CrossRefGoogle Scholar
  5. 5.
    Slack, G., New materials and performance limits for thermoelectric cooling, in CRC Handbook of Thermoelectrics, Rowe, D.M., Ed., New York: Boca Raton, 1995, pp. 407–440.Google Scholar
  6. 6.
    Novoselova, A.V., Fiziko-khimicheskie svoistva poluprovodnikovykh veshchestv. Spravochnik (Physical and chemical properties of semiconductors. Handbook), Moscow: Nauka, 1979.Google Scholar
  7. 7.
    Shelimova, L.E., Karpinskiy, O.G., Avilov, E.S., Kretova, M.A., and Lubman, G.U., Effect of nonstoichiometry on the electrophysical properties of the layered compounds Ge3Bi2Te6 and GeBi2Te4, Neorgan. Mater., 1994, vol. 30, no. 12, pp. 1516–1522.Google Scholar
  8. 8.
    Shelimova, L.E., Karpinskiy, O.G., Konstantinov, P.P., Avilov, E.S., Kretova, M.A., Nikhezina, I.Yu., and Zemskov, V.S., Thermoelectric materials on base of intermediate compounds in systems formed by lead and bismuth chalcogenides, Perspekt. Mater., 2009, no. 5, pp. 5–13.Google Scholar
  9. 9.
    Zemskov, V.S., Shelimova, L.E., Karpinskiy, O.G., Konstantinov, P.P., Avilov, E.S., and Kretova, M.A., New semiconductor materials for thermoelectric generators on the basis of layered chalcogenides of elements IV and V groups of the D.I. Mendeleev periodic table, in K 70-letiyu Instituta materialov i Materialovedeniya imeni A.A. Baikova Ross. Akad. Bauk (To 70 Years Anniversary of the A.A. Baikov Institute of Metallurgy and Material Science of Russ. Acad. Sci., Moscow: Intercontact Nauka, 2008, pp. 512–532.Google Scholar
  10. 10.
    Zemskov, V.S., Shelimova, L.E., Konstantinov, P.P., Avilov, E.S., Kretova, M.A., and Nikhezina, I.Yu., Thermoelectric materials on the basis of solid solutions with the anion replacement in threefold mutual system Pb, Bi/Se, Te, Perspekt. Mater., 2012, no. 5, pp. 5–12.Google Scholar
  11. 11.
    Zemskov, V.S., Shelimova, L.E., Konstantinov, P.P., Avilov, E.S., Kretova, M.A., Nikhezina, I.Yu., Physical-chemical and thermoelectric properties of complex bismuth and lead chalcogenides and their solid solutions. Perspekt. Mater., 2013, no. 8, pp. 36–44.Google Scholar
  12. 12.
    Yang, K., Setyawan, W., Wang, S., Nardelli, M.B., and Curtarollo, S.A., Search model for topological insulators with high-throughput robustness descriptors, Nature Mater., 2012, vol. 11, no. 7, pp. 614–619.CrossRefGoogle Scholar
  13. 13.
    Rogacheva, E.I., Jigareva, N.K., and Ivanova, A.B., Solid solutions on the basis of PbTe in system PbTe–CdTe, Neorgan. Mater., 1988, vol. 24, no. 10, pp. 1629–1633.Google Scholar
  14. 14.
    Korzhuev, M.A., Katin, I.V., and Nikhezina, I.Yu., Thermocouples own electromagnetic fields and the possibility of their being reduced to safe limits, in Termoelektriki i ikh primeneniya (Thermoelectrics and Their Applications), Fedorov, M.I. and Lukjanova, L.N., Eds., St.-Petersburg, PIJAF, 2015, pp. 245–250.Google Scholar
  15. 15.
    Okhotin, A.S., Efremov, A.A., Okhotin, V.S., and Pushkarskiy, A.S., Termoelektricheskie generatory (Thermoelectric Generators), Moscow: Atomizdat, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. S. Avilov
    • 1
  • M. A. Korzhuev
    • 1
  • M. A. Kretova
    • 1
  • A. B. Michajlova
    • 1
  1. 1.Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations