Advertisement

Inorganic Materials: Applied Research

, Volume 6, Issue 5, pp 515–520 | Cite as

Structurization and moisture absorption features of epoxy nanocomposites with carbon nanotubes

  • P. S. Marakhovskiy
  • S. V. Kondrashov
  • T. P. Dyachkova
  • Ya. M. Gurevich
  • I. A. Mayorova
  • A. K. Shvedkova
  • E. O. Valevin
  • G. Yu. Yurkov
Article

Abstract

Epoxy compositions cured in various temperature–time modes are studied by thermal analysis methods before and after modification by functionalized carbon nanotubes (FCNT). In the conditions where a formed network is not uniform and, thus, is characterized by a wide variety of different structural elements with different segmental mobility, the modification of epoxy resins leads to networks with less defects. In this case, the moisture sorption of the modified samples is lower as compared to the unmodified matrix. In the case where the selected temperature–time mode provides less defective networks in the starting sample, the moisture absorption of the modified sample is higher as compared to the unmodified one. It is shown that the mechanism of plasticizing of the FCN modified binders at moisture saturation depends on the mode of curing, differs from that of the unmodified samples, and requires further investigation.

Keywords

carbon nanotubes aging epoxy nanocomposite thermal properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, vol. 287, pp. 637–640.CrossRefGoogle Scholar
  2. 2.
    Yu, M.F., Files, B.S., Arepalli, S., and Ruoff, R.S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 2000, vol. 84, pp. 5552–5555.CrossRefGoogle Scholar
  3. 3.
    Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., and Dekker, C., Individual single-wall carbon nanotubes as quantum wires, Nature, 1997, vol. 386, pp. 474–477.CrossRefGoogle Scholar
  4. 4.
    Osman, M.A. and Srivastava, D., Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology, 2001, vol. 12, pp. 21–24.CrossRefGoogle Scholar
  5. 5.
    Berber, S., Kwon, Y.K., and Tomanek, D., Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 2000, vol. 84, pp. 4613–4616.CrossRefGoogle Scholar
  6. 6.
    Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Yu., Prospects of using carbonaceous nanoparticles in binders for polymer composites, Nanotechnologies in Russia, 2013, vol. 8, pp. 163–185.CrossRefGoogle Scholar
  7. 7.
    Kirillov, V.N., Kavun, N.S., Rakitina, V.P., Deev, I.S., Topunova, T.Je., Efimov, V.A., and Mazaev, P.Ju., Investigation of the effect of heat and humidity effects on the properties of epoxy fiberglass laminate, Plastich. Massy, 2008, no. 9, pp. 14–17.Google Scholar
  8. 8.
    Kirillov, V.N., Efimov, V.A., Shvedkova, A.K., and Nikolaev, E.V., Investigation of the influence of climatic factors and mechanical loading on the structure and mechanical properties of the PCM, Aviats. Mater. Tekhnol., 2011, no. 4, pp. 41–45.Google Scholar
  9. 9.
    Kablov, E.N., Startsev, O.V., Krotov, A.S., and Kirillov, V.N., Climatic aging of composite aviation materials: I. Aging mechanisms, Russian Metallurgy (Metally), 2011, pp. 993–1000.Google Scholar
  10. 10.
    Guadagno, L., De Vivo, B., Di Bartolomeo, A., Lamberti, P., Sorrentino, A., Tucci, V., Vertuccio, L., and Vittoria, V., Effect of functionalization on the thermomechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites, Carbon, 2011, vol. 49, pp. 1919–1930.CrossRefGoogle Scholar
  11. 11.
    Akatenkov, R.V., Kondrashov, S.V., Fokin, A.S., and Marahovskiy, P.S., Polymer network formation features over the curing processes of epoxy oligomers with fuctionalized nanotubes, Aviats. Mater. Tekhnol., 2011, no. 2, pp. 31–37.Google Scholar
  12. 12.
    Bourlinos, A.B., Georgakilas, V., Boukos, N., Dallas, P., Trapalis, C., and Giannelis, E.P., Siliconefunctionalized carbon nanotubes for the production of new carbon-based fluids, Carbon, 2007, vol. 45, pp. 1583–1585.CrossRefGoogle Scholar
  13. 13.
    Irzhak, V.I. and Mezhikovskiy, S.M., Structural aspects of the formation of cross-linked polymers when cured oligomeric systems, Russ. Chem. Rev., 2009, vol. 78, pp. 165–194.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. S. Marakhovskiy
    • 1
  • S. V. Kondrashov
    • 1
  • T. P. Dyachkova
    • 2
  • Ya. M. Gurevich
    • 1
  • I. A. Mayorova
    • 1
  • A. K. Shvedkova
    • 1
  • E. O. Valevin
    • 1
  • G. Yu. Yurkov
    • 3
  1. 1.All Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Tambov State Technical UniversityTambovRussia
  3. 3.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations