Advertisement

Inorganic Materials: Applied Research

, Volume 6, Issue 5, pp 498–505 | Cite as

Influence of deformation during warm rolling on martensitic transformation temperatures and the value of superelasticity and shape memory effects in Ti49.2Ni50.8 (at %) alloy

  • A. I. Lotkov
  • Yu. N. Koval
  • V. N. Grishkov
  • D. Yu. Zhapova
  • V. N. Timkin
  • G. S. Firstov
Article

Abstract

The influence of the warm isothermal (723 K) rolling in grooved rolls on the grain structure, martensitic transformation temperatures, and inelastic properties of Ti49.2Ni50.8 (at %) alloy is investigated. It is shown that transition from initial coarse-grained structure to microand submicrocrystalline structures of samples occurs as a result of rolling with the intense deformation to 1.8. The inelastic properties (superelasticity and shape memory effects) are studied under torsion deformation. The value of the superelasticity effect (including the elastic deformation) was determined in isothermal (295 K) “loading–unloading” cycles. The value of the shape memory effect is equal to the recovery of inelastic deformation under heating of unloaded samples. The accumulated plastic deformation corresponds to the residual deformation after the completion of shape recovery under heating. The total inelastic deformation under torsions of rolled sample reaches 8.5–9.5% (99% of the degree of shape recovery), the shape memory effect is 5–6%, and the superelasticity effect is 3–4%.

Keywords

titanium nickelide–based alloys warm multipass rolling in grooved rolls martensitic transformation shape memory effect superelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dudarev, Ye.F., Bakach, G.P., Kolobov, Yu.R., Ivanov, K.V., Lotkov, A.I., Grishkov, V.N., Valiyev, R.Z., and Ivanov, M.B., Localization of martensitic deformation on mesoand macroscale levels in large grain and sub-micro grain alloys with shape memory, Phys. Mesomech., 2004, vol. 7, sp. No. 1, pp. 127–130.Google Scholar
  2. 2.
    Prokof’yev, Ye.A., Structure and properties of ultrafine grained Ti–Ni alloys obtained by severe plastic deformation, Vest. Ufim. Gos. Aviat. Univ., 2006, vol. 8, pp. 169–171.Google Scholar
  3. 3.
    Lotkov, A.I., Grishkov, V.N., Kopylov, V.I., Baturin, A.A., and Girsova, N.V., Effect of severe plastic deformation of Ti50Ni47.3Fe2.7 on martensitic transformation and shape memory effect, Prspekt. Mater., 2007, Special issue, part. 2, pp. 396–398.Google Scholar
  4. 4.
    Khmelevskaya, I.Yu., Prokoshkin, S.D., Dobatkin, S.V., Trubitsyna, I.B., Tatyanin, E.V., Stolyarov, V.V., Prokofyev, Ye.A., Brailovski, V., and Tyurenn, S., Features reversible deformation and stress reactive alloys of TiNi shape memory after thermomechanical treatment and severe plastic deformation, Deform. Razrush. Mater., 2007, no. 2, pp. 33–37.Google Scholar
  5. 5.
    Khmelevskaya, I.Yu., Prokoshkin, S.D., Trubitsyna, I.B., Belousov, M.N., Dobatkin, S.V., Tatyanin, E.V., Korotitskiy, A.V., Brailovski, V., Stolyarov, V.V., and Prokofiev, E.A., Structure and properties of Ti-Nibased alloys after equal-channel angular pressing and high-pressure torsion, Mater. Sci. Eng. A, 2008, vol. 481–482, pp. 119–122.CrossRefGoogle Scholar
  6. 6.
    Pushin, V.G., Lotkov, A.I., Kolobov, Yu.R., Valiyev, R.Z., Dudarev, Ye.F., Kuranova, N.N., Dyupin, A.P., Gunderov, D.V., and Bakach, G.P., On the nature of the anomalously high plasticity of highstrength titanium nickelide alloys with shape memory effects: I. Initial structure and mechanical properties, Phys. Met. Metallogr., 2008, vol. 106, pp. 520–530.CrossRefGoogle Scholar
  7. 7.
    Grishkov, V.N., Lotkov, A.I., Dudarev, Ye.F., Girsova, N.V., and Tabachenko, A.A., Effect of severe plastic deformation on microstructure and martensitic transformations in titanium nickelide, Fiz. Mezomekh., 2006, vol. 9, Special issue, pp. 95–98.Google Scholar
  8. 8.
    Lotkov, A.I., Grishkov, V.N., Dudarev, Ye.F., Girsova, N.V., and Tabachenko, A.N., Formation of ultrafine state, martensitic transformation and inelastic properties of after abc-pressing, Vopr. Materialoved., 2008, no. 1, pp. 161–165.Google Scholar
  9. 9.
    Lotkov, A.I., Grishkov, V.N., Dudarev, Ye.F., Koval’, Yu.N., Girsova, N.V., Kashin, O.A., Tabachenko, A.N., Firstov, G.S., Timkin, V.N., and Zhapova, D.Yu., Ultrafine structure and martensitic transformations in titanium nickelide after a warm abcpressing, Inorg. Mater.: Appl. Res., 2011, vol. 2, pp. 548–555.CrossRefGoogle Scholar
  10. 10.
    Lotkov, A.I., Grishkov, V.N., Kashin, O.A., Baturin, A.A., Zhapova, D.Yu., Girsova, N.V., Timkin, V.N., Krukovskiy, K.V., and Bratchikov, A.D., Formation of ultrafine-grained structure of titanium nickelide with stepwise decreasing temperature multipass warm rolling, Perspekt. Mater., 2011, no. 13, pp. 931–938.Google Scholar
  11. 11.
    Lotkov, A.I., Kashin, O.A., Grishkov, V.N., Krukovskiy, K.V., Zhapova, D.Yu., and Smolyazhenko, Yu.V., Effect of warm rolling on the patterns of deformation and fracture tensile alloy titanium nickelide, Perspekt. Mater., 2011, no. 13, pp. 401–410.Google Scholar
  12. 12.
    Grishkov, V.N., Lotkov, A.I., Dudarev, Ye.F., Kudinova, Ye.D., Ivanov, K.V., Maletkina, T.Yu., and Ivanov, Yu.F., Martensitic transformations in nanostuctured alloys based on titanium nickelide produced by severe deformation of rolling, Phys. Mesomech., 2004, vol. 7, Special issue, part 2, pp. 26–29.Google Scholar
  13. 13.
    Prokoshkin, S.D., Brailovski, V., Khmelevskaya, I.Yu., Dobatkin, S.V., Inayekyan, K.E., Turilina, V.Yu., Demers, V., and Tat’yanin, Ye.V., Creation of substructure and nanostructure in thermomechanical treatment and control of functional properties of Ti–Ni–alloys with shape memory effect, Metal. Sci. Heat Treat., 2005, vol. 47, pp. 182–187.CrossRefGoogle Scholar
  14. 14.
    Prokoshkin, S.D., Brailovski, V., Khmelevskaya, I.Yu., Dobatkin, S.V., Inayekyan, K.E., Demers, V., Bastarache, Ye., and Tat’yanin, Ye.V., Formation of a nanocrystalline structure upon severe rolling plastic deformation and annealing and improvement of set of functional properties of Ti–Ni alloy, Bull. Russ. Acad. Sci.: Phys., 2006, vol. 70, pp. 1536–1541.Google Scholar
  15. 15.
    Prokoshkin, S.D., Brailovski, V., Inaekyan, K.E., Demers, V., Khmelevskaya, I.Yu., Dobatkin, S.V., and Tatyanin, E.V., Structure and properties of severely cold-rolled and annealed Ti-Ni shape memory alloys, Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 114–118.CrossRefGoogle Scholar
  16. 16.
    Ryklina, Ye.P., Prokoshkin, S.D., Chernavina, A.A., and Perevoshchikova, N.N., Investigation on the influence of thermomechanical conditions of induction and structure on the shape memory effect in the Ti–Ni alloy, Inorg. Mater.: Appl. Res., 2010, vol. 1, pp. 188–194.CrossRefGoogle Scholar
  17. 17.
    Ryklina, Ye.P., Prokoshkin, S.D., and Chernavina, A.A., Peculiarities of abnormally high shape memory effects in thermomechanically treated Ti–Ni alloys, Inorg. Mater.: Appl. Res., 2013, vol. 4, pp. 348–355.CrossRefGoogle Scholar
  18. 18.
    Kuranova, N.N., Gunderov, D.V., Uksusnikov, A.N., Luk’yanov, A.V., Yurchenko, L.I., Prokof’yev, Ye.A., Pushin, V.G., and Valiev, R.Z., Effect of hHeat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion, Phys. Met. Metallogr., 2009, vol. 108, pp. 556–568.CrossRefGoogle Scholar
  19. 19.
    Kuranova, N.N., Pushin, V.G., Uksusnikov, A.N., Yurchenko, L.I., Gunderov, D.V., and Valiyev, R.Z., Effect of severe plastic deformation on the phase and structural transformations and mechanical properties of metastable austenitic Ti–Ni alloys, Russian Metall. (Metally), 2010, no. 4, pp. 296–300.CrossRefGoogle Scholar
  20. 20.
    Shutilin, Yu.F., Reverse torsion pendulum, USSR Patent 978005, 1982.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. I. Lotkov
    • 1
  • Yu. N. Koval
    • 2
  • V. N. Grishkov
    • 1
  • D. Yu. Zhapova
    • 1
  • V. N. Timkin
    • 1
  • G. S. Firstov
    • 2
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Kurdyumov Institute for Metal PhysicsNational Academy of Science of UkraineKyiv-142Ukraine

Personalised recommendations