Inorganic Materials: Applied Research

, Volume 6, Issue 3, pp 255–258 | Cite as

Investigation of the structure of carbon-ceramic composite using of electron microscopy and nuclear backscattering spectrometry

  • N. N. Andrianova
  • N. Yu. Beilina
  • A. M. Borisov
  • V. G. Vostrikov
  • E. S. Mashkova
  • D. V. Petrov
  • N. V. Tkachenko
  • D. N. Chernenko
  • N. M. Chernenko
New Methods of Treatment and Fabrication of Materials with Desired Properties
  • 17 Downloads

Abstract

The structure and composition of carbon-ceramic composite FEBUS reinforced with carbon fibers based on viscose, as well as its precursors, are studied using the methods of scanning electron microscopy with energy dispersion analysis and nuclear backscattering spectrometry of 7.5 MeV protons. It is shown that impregnation of the composite precursor with Si (up to ∼30 at %) scarcely leads to siliconizing of the reinforcing fibers. With the stoichiometry of SiC taken into account, the fraction of the carbide component in the composite reaches ∼40%; the remaining ∼60% is the carbon component.

Keywords

carbon-ceramic composite carbon fiber silicon carbide scanning electron microscopy energy dispersion analysis (EDA) nuclear backscattering spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon and carbon based intercalation compounds and composites), Moscow: Aspekt Press, 1997.Google Scholar
  2. 2.
    Chernenko, N.M., Methodical features of making of large-dimension integral constructions of avia-cosmic technique from carbon-carbon-carbide-silicon composition material, in Sovremennye problemy proizvodstva i ekspluatatsii uglerodnoi produktsii (Up-to-date Problems of Making and Exploitation of Carbon Production), Chelyabinsk: Biblioteka A. Millera, 2000, pp. 217–219.Google Scholar
  3. 3.
    Chernenko, N.M., Development of preform of carbon-carbon-carbide-silicon composition material, Perspekt. Mater., 1999, no. 6, pp. 78–84.Google Scholar
  4. 4.
    Virgil’ev, Yu.S. and Kal’yagina, I.P., Carbon-carbon composite materials, Inorg. Mater., 2004, vol. 40,Suppl. 1, pp. 33–49.CrossRefGoogle Scholar
  5. 5.
    Bespalova, O.V., Borisov, A.M., Vostrikov, V.G., Romanovskii, E.A., and Serkov, M.V., Analysis of coatings and surface layers of materials by proton-backscattering spectrometry, Phys. At. Nuclei, 2009, vol. 72, pp. 1664–1671.CrossRefGoogle Scholar
  6. 6.
    Avilkina, V.S., Andrianova, N.N., Borisov, A.M., Virgil’ev, Yu.S., Kulikauskas, V.S., Mashkova, E.S., and Timofeev, M.A., Application of ion beams for investigation of carbon-ceramic composite, Fiz. Khim. Obrab. Mater., 2010, no. 6, pp. 10–14.Google Scholar
  7. 7.
    Pratton, M., Interaction to Surface Physics, Clarendon: 1994; Izhevsk: Regul. Khaot. Dinam., 2000, vol. 256.Google Scholar
  8. 8.
    Tarabanov, A.S. and Kostikov, V.I., Silitsirovannyi grafit (Silicicated Graphite), Moscow: Metallurgiya, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. N. Andrianova
    • 1
  • N. Yu. Beilina
    • 2
  • A. M. Borisov
    • 1
  • V. G. Vostrikov
    • 1
  • E. S. Mashkova
    • 1
  • D. V. Petrov
    • 1
  • N. V. Tkachenko
    • 1
  • D. N. Chernenko
    • 2
  • N. M. Chernenko
    • 2
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.State Research Institute of Constructional Materials Graphite (NIIGRAFIT)MoscowRussia

Personalised recommendations