Advertisement

Inorganic Materials: Applied Research

, Volume 6, Issue 2, pp 96–104 | Cite as

The influence of degree of deformation under isothermal abc pressing on evolution of structure and temperature of phase transformations of alloy based on titanium nickelide

  • A. I. Lotkov
  • O. A. Kashin
  • V. N. Grishkov
  • K. V. Krukovskii
Physico-Chemical Principles of Materials Development

Abstract

The article discusses investigations into evolution of microstructure and variation of temperatures of martensitic transformations of the alloy Ti49.8Ni50.2 (at %) with increase in the degree of deformation under isothermal abc pressing (T = 723 K). It is discovered that, at the initial stages of the abc pressing in the vicinity of forge cross, the grain size sharply decreases; in some cases, this decrease exceeds the initial size by about an order of magnitude. Possible mechanisms of formation of such structure are analyzed. It has been demonstrated that, at the degrees of true deformation e > 2, the grain structure in total specimen bulk is refined through the mechanism of continuous dynamic recrystallization, which leads to formation of a homogeneous fine grain structure with a high volumetric portion of submicrocrystalline and nanostructured fractions. It is established that, at all considered degrees of deformation, the temperatures of martensitic transformations remain actually constant, which can be attributed to intense behavior of dynamic and postdynamic recovery, as well as formation of the martensite phase upon cooling from the pressing temperature.

Keywords

titanium nickelide isothermal abc pressing microstructure dynamic recrystallization temperatures of martensitic transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valiyev, R.Z. and Aleksandrov, I.A., Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Bulk Nanostructure Metal Materials: Obtaining, Structure and Properties) Moscow: Akademkniga, 2007.Google Scholar
  2. 2.
    Estrin, Y. and Vinogradov, A., Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia, 2013, vol. 61, pp. 2782–2817.CrossRefGoogle Scholar
  3. 3.
    Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., and Jonas, J.J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress Mater. Sci., 2014, vol. 60, pp. 130–207.CrossRefGoogle Scholar
  4. 4.
    Stolyarov, V.V., Prokofyev, Ye.A., Prokoshkin, S.D., Dobatkin, S.V., Trubitsyna, I.B., Khmelevskaya, I.Yu., Pushin, V.G., and Valiyev, R.Z., Structural features, mechanical properties and the shape-memory effect in TiNi alloys subjected to equal-channel angular pressing, Phys. Met. Metallogr., 2005, vol. 100, pp. 608–618.Google Scholar
  5. 5.
    Prokoshkin, S.D., Belousov, M.N., Abramov, V.Ya., Korotitsky, A.V., Makushev, S.Yu., Khmelevskaya, I.Yu., Dobatkin, S.V., Stolyarov, V.V., Prokofyev, Ye.A., Zharikov, A.I., and Valiyev, R.Z., Creation of submicrocrystalline structure and improvement of functional properties of shape memory alloys of the Ti-Ni-Fe system with the help of equal channel angular pressing, Metal Sci. Heat Treat., 2007, vol. 49, pp. 51–56.CrossRefGoogle Scholar
  6. 6.
    Khmelevskaya, I.Yu., Prokoshkin, S.D., Trubitsyna, I.B., Belousov, M.N., Dobatkin, S.V., Tatyanin, E.V., Korotitskiy, A.V., Brailovski, V., Stolyarov, V.V., and Prokofiev, E.A., Structure and properties of Ti-Nibased alloys after equal-channel angular pressing and high-pressure torsion, Mater. Sci. Eng., A, 2008, vols. 481–482, pp. 119–122.CrossRefGoogle Scholar
  7. 7.
    Yurchenko, L.I., Dyupin, A.P., Gunderov, D.V., Valiev, R.Z., Kuranova, N.N., Pushin, V.G., and Uksusnikov, A.N., http://www.ptosnm.ru, 2006.
  8. 8.
    Gunderov, D.V., Prokofyev, Ye.A., Pushin, V.G., and Valiyev, R.Z., Investigation into nature of high strength and plasticity of ultra-fine-grained alloy of TiNi grade produced by means of equal channel angular extrusion, Deform. Fract. Mater., 2007, no. 10, pp. 13–21.Google Scholar
  9. 9.
    Prokofyev, V.A., Structure and properties of ultra-low grain TiNi alloy obtained by intensive plastic deformation, Vestn. Ufimsk. Gos. Avia. Tekhn. Univ., 2006, vol. 8, pp. 169–171.Google Scholar
  10. 10.
    Dudarev, Ye.F., Bakach, G.P., Kolobov, Yu.R., Ivanov, K.V., Lotkov, A.I., Grishkov, V.N., Valiyev, R.Z., and Ivanov, M.B., Localization of martensitic deformation on meso- and macroscale levels in large grain and sub-micro grain alloys with shape memory, Phys. Mesomechanics, 2004, vol. 7, no. S1-1, pp. 127–130.Google Scholar
  11. 11.
    Pushin, V.G., Lotkov, A.I., Kolobov, Yu.R., Valiyev, R.Z., Dudarev, Ye.F., Kuranova, N.N., Dyupin, A.P., Gunderov, D.V., and Bakach, G.P., On the nature of anomalously high plasticity of high-strength titanium nickelide alloys with shape-memory effects. I. Initial structure and mechanical properties, Phys. Met. Metallogr., 2008, vol. 106, pp. 520–530.CrossRefGoogle Scholar
  12. 12.
    Karaman, I., Ersin, Karaca, H., Maier, H.J., and Luo, Z.P., The effect of severe marforming on shape memory characteristics of a Ti-rich NiTi alloy processed using equal channel angular extrusion, Metallur. Mater. Trans. A, 2003, vol. 33, pp. 2527–2539.CrossRefGoogle Scholar
  13. 13.
    Valiev, R., Gunderov, D., Prokofiev, E., Pushin, V., and Zhu, Yu., Nanostructuring of TiNi alloy by SPD processing for advanced properties, Mater. Trans., 2008, vol. 49, pp. 97–101.CrossRefGoogle Scholar
  14. 14.
    Prokoshkin, S.D., Khmelevskaya, I.Yu., Dobatkin, S.V., Trubitsyna, I.B., Tat’yanin, E.V., Stolyarov, V.V., and Prokof’ev, E.A., Structure evolution upon severe plastic deformation of TiNi-based shape-memory alloys, Phys. Met. Metallogr., 2004, vol. 97, pp. 619–625.Google Scholar
  15. 15.
    Brailovski, V., Demers, V., Prokoshkin, S.D., Khmelevskaya, I.Yu., Inaekyan, K.E., Dobatkin, S.V., and Tatyanin, E.V., Structure and properties of the Ti-50.0 at. % alloy after strain hardening and nanocrystallizing thermomechanical processing, Mater. Trans., 2006, vol. 47, pp. 795–804.CrossRefGoogle Scholar
  16. 16.
    Prokoshkin, S.D., Khmelevskaya, I.Yu., Dobatkin, S.V., Trubitsyna, I.B., Tatyanin, E.V., Stolyarov, V.V., and Prokofiev, E.A., Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys, Acta Mater., 2005, vol. 53, pp. 2703–2714.CrossRefGoogle Scholar
  17. 17.
    Prokoshkin, S.D., Brailovsky, V., Khmelevskaya, I.Yu., Dobatkin, S.V., Inayekyan, K.E., Demers, V., Bastarash, Ye., and Tatyanin, Ye.V., Formation of nanocrystalline structure upon severe rolling plastic deformation and annealing and improvement of set of functional properties of Ti-Ni alloys, Bull. Russ. Acad. Sci.: Phys., 2006, vol. 70, pp. 1536–1541.Google Scholar
  18. 18.
    Prokoshkin, S.D., Brailovski, V., Inaekyan, K.E., Demers, V., Khmelevskaya, I.Yu., Dobatkin, S.V., and Tatyanin, E.V., Structure and properties of severely cold-rolled and annealed Ti-Ni shape memory alloys, Mater. Sci. Eng. A, 2008, vol. 481–482, pp. 114–118.CrossRefGoogle Scholar
  19. 19.
    Prokoshkin, S.D., Brailovsky, V., Korotitsky, A.V., Inayekyan, K.E., and Glezer, A.M., Specific features of the formation of the microstructure of titanium nickelide upon thermomechamical treatment including cold plastic deformation to degrees from moderate to severe, Phys. Met. Metallogr., 2010, vol. 110, pp. 289–303.CrossRefGoogle Scholar
  20. 20.
    Dyupin, A.P., Kuranova, N.N., Pushin, V.G., and Valiyev, R.Z., Effect of severe plastic deformation by torsion on the structure and properties of TiNi-based alloys with shape memory effects, Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, pp. 550–552.CrossRefGoogle Scholar
  21. 21.
    Kuranova, N.N., Gunderov, D.V., Uksusnikov, A.N., Lukyanov, A.V., Yurchenko, L.I., Prokofyev, Ye.A., Pushin, V.G., and Valiyev, R.Z., Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion, Phys. Met. Metallogr., 2009, vol. 108, pp. 556–568.CrossRefGoogle Scholar
  22. 22.
    Kuranova, N.N., Makarov, V.V., Pushin, V.G., Uksusnikov, A.N., Valiyev, R.Z., Gunderov, D.V., Lukyanov, A.V., and Prokofyev, Ye.A., Amorphization of bulk TiNi-based alloys by swvere plastic deformation under high pressure torsion, Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, pp. 1117–1119.CrossRefGoogle Scholar
  23. 23.
    Gunderov, D., Lukyanov, A., Prokofiev, E., and Pushin, V.G., Mechanical properties of the nanocrystalline Ti49.4Ni50.6 alloy produced by high pressure torsion, Eur. Phys. J. Spec. Topics, 2008, vol. 158, pp. 53–58.CrossRefGoogle Scholar
  24. 24.
    Gunderov, D., Lukyanov, A., Prokofiev, E., Kilmametov, A., Pushin, V., and Valiev, R., Mechanical properties and martensitic transformations in nanocrystalline Ti49.4Ni50.6 alloy produced by high pressure torsion, Mater. Sci. Eng., A, 2009, vol. 503, pp. 75–77.CrossRefGoogle Scholar
  25. 25.
    Grishkov, V.N., Lotkov, A.I., Dudarev, Ye.F., Girsova, N.V., and Tabachenko, A.A., Effect of temperature of severe plastic deformation on microstructure and martensitic transformations in titanium nickelide, Fiz. Mesomekh., 2006, vol. 9, spec. issue, pp. 95–98.Google Scholar
  26. 26.
    Lotkov, A.I., Baturin, A.A., Grishkov, V.N., and Kopylov, V.I., Role of crystal defects in nanofragmentation of grain structure under intensive cold plastic deformation of metals and alloys, Phys. Mesomech., 2007, vol. 10, pp. 179–189.CrossRefGoogle Scholar
  27. 27.
    Lotkov, A.I., Grishkov, V.N., Dudarev, Ye.F., Girsova, N.V., and Tabachenko, A.N., Formation of ultrafine grain structure, martensitic transformations and unelastic properties of titanium nickelide after abc-pressing, Vopr. Materialoved., 2008, no. 1, pp. 161–165.Google Scholar
  28. 28.
    Dudarev, Ye.F. Valiev, R.Z., Kolobov, Yu.R., Lotkov, A.I., Pushin, V.G., Bakach, G.P., Gunderov, D.V., Dyupin, A.P., and Kuranova, N.N., On the nature of anomalously high plasticity of high-strength titanium nickelide alloys with shapememory effects: II. Mechanisms of plastic deformation upon isothermal loading, Phys. Met. Metallogr., 2009, vol. 107, pp. 298–311.CrossRefGoogle Scholar
  29. 29.
    Lotkov, A.I., Kashin, O.A., Grishkov, V.N., Krukovsky, K.V., Zhapova, D.Yu., and Smolyazhenko, Yu.V., Effect of warm rolling on process of deformation and destruction under titanium nickelide alloy tension, Perspekt. Mater., 2011, spec. issue, no. 13, pp. 401–409.Google Scholar
  30. 30.
    Lotkov, A.I., Grishkov, V.N., Dudarev, Ye.F., Koval, Yu.N., Girsova, N.V., Kashin, O.A., Tabachenko, A.N., Firstov, G.S., Timkin, V.N., and Zhapova, D.Yu., Ultrafine structure and martensitic transformations in titanium nickelide after warm abc-pressing, Inorg. Mater.: Appl. Res., 2011, vol. 2, pp. 548–555.CrossRefGoogle Scholar
  31. 31.
    Lotkov, A.I., Grishkov, V.N., Kashin, O.A., Baturin, A.A., Zhapova, D.Yu., Girsova, N.V., Timkin, V.N., Krukovsky, K.V., and Bratchikov, A.D., Formation of titanium nickelide ultrafine grain structure under step-type decrease of warm multistage rolling, Perspekt. Mater., 2011, spec. issue, no. 13, pp. 931–938.Google Scholar
  32. 32.
    Nakayama, H., Tsuchiya, K., and Umemoto, M., Crystal refinement and amorphisation by cold rolling in TiNi shape memory alloys, Scripta Mater., 2001, vol. 4, pp. 1781–1785.CrossRefGoogle Scholar
  33. 33.
    Dehghani, K. and Khamei, A.A., Hot deformation behavior of 60Nitinol (Ni60 wt. %—Ti40 wt. % alloy: Experimental and computational studies, Mater. Sci. Eng., A 2010, vol. 527, pp. 684–690.CrossRefGoogle Scholar
  34. 34.
    Frenzel, J., Burow, J.A., Payton, E.J., Rezanka, S., and Eggeler, G., Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures, Adv. Eng. Mater., 2011, vol. 13, pp. 256–268.CrossRefGoogle Scholar
  35. 35.
    Lotkov, A.I., Baturin, A.A., Grishkov, V.N., and Kopylov, V.I., Mechanism of hot, warm and cold plastic deformation effect on microstructure of titanium nickelide-based shape-memory alloys, Proc. 12th China-Russia Symp. On Advanced Materials and Technologies “Advanced Metals, Ceramics and Composites”, Kunming, 2013, pp. 344–348.Google Scholar
  36. 36.
    Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Oxford: Elsevier, 2004, 2nd ed.Google Scholar
  37. 37.
    Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H., Li, X., Mukherjee, A.K., Bingert, J.F., and Zhu, Y.T., High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni, Appl. Phys. Lett., 2006, vol. 88, pp. 021909.CrossRefGoogle Scholar
  38. 38.
    Sansoz, F. and Dupont, V., Grain growth behavior at absolute zero during nanocrystalline metal indentation, Appl. Phys. Lett., 2006, vol. 89, pp. 111901.CrossRefGoogle Scholar
  39. 39.
    James, C.M.Li., Mechanical grain growth in nanocrystalline copper, Phys. Rev. Lett., 2006, vol. 96, pp. 215506.CrossRefGoogle Scholar
  40. 40.
    Wang, Y.B., Ho, J.C., Liao, X.Z., Li, H.Q., Ringer, S.P., and Zhu, Y.T., Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni-Fe alloy, Appl. Phys. Lett., 2009, vol. 94, pp. 011908.CrossRefGoogle Scholar
  41. 41.
    Panin, V.E. and Yegorushkin, V.E., Physical mesomechanics and non-equilibrium thermodynamics as base of nano-materials science, Phys. Mesomech., 2009, vol. 12, pp. 204–220.CrossRefGoogle Scholar
  42. 42.
    Pushin, V.G., Splavy nikelida titana s pamyat’yu formy. Ch. 1. Struktura, fazovye prevrashcheniya i svoystva (Memory Shape Titanium Nickelide Alloys. 1. Structure, Phase Transformation and Properties), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. I. Lotkov
    • 1
  • O. A. Kashin
    • 1
  • V. N. Grishkov
    • 1
  • K. V. Krukovskii
    • 1
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations