Skip to main content
Log in

Generation of shock waves in materials science experiments with dense plasma focus device

  • Physico-Chemical Principles of Materials Development
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper presents a comparison of the results of numerical simulations of the shock wave (SW) produced inside a stainless steel plate by a powerful pulsed stream of fast ions generated in a dense plasma focus device with its experimental observations. A SW was detected for the first time in a materials science experiment directly by means of multiframe nanosecond laser interferometry. This was visualized in experiments with the PF-1000 facility after the SW went out at the rear side of the thin stainless steel plate into the residual gas atmosphere. In particular, the pressure amplitude of the SW measured by the interferometric method was 16 GPa. The observed value is in good agreement with the results of numerical simulations of the SW pressure amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondarenko, G.G., Ivanov, L.I., and Yanushkevich, V.A., Effect of giant laser pulses on aluminum microstructure, Fiz. Khim. Obrab. Mater., 1973, no. 4, pp. 19–21.

    Google Scholar 

  2. Larikov, L.N., Filchenko, V.M., and Mazanko, V.F., Anomalous enhance of diffusion in metals under impact loading, Dokl. Akad. Nauk SSSR. Ser. Mat. Fiz., 1975, vol. 221, pp. 1073–1075.

    CAS  Google Scholar 

  3. Ivanov, L.I., Litvinova, N.A., and Yanushkevich, V.A., Abnormal distribution of density of point defects formed in absorbing material by laser irradiation, Fiz. Khim. Obrab. Mater., 1976, no. 2, pp. 3–6.

    CAS  Google Scholar 

  4. Ivanov, L.I., Litvinova, N.A., and Yanushkevich, V.A., Depth of shock waves formation on molybdenum single crystal surface under laser radiation, Kvant. Elektron., 1977, vol. 4, pp. 204–206.

    CAS  Google Scholar 

  5. Kanel, G.I., Razoryonov, S.V., Utkin, A.V., and Fortov, V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh (Shock-Wave Phenomena in Condensed Media), Moscow: Yanus-K, 1996.

    Google Scholar 

  6. Bonyushkin, Ye.K., Zavada, N.I., Novikov, S.A., and Uchayev, A.Ya., Kinetics of dynamic metals fracture under pulse volume heating, Rep. Scientists Russ. Nucl. Cent., 1998, no. 3, p. 275.

    Google Scholar 

  7. Didenko, A.N., Sharkeyev, Yu.P., Kozlov, E.V., and Ryabchikov, A.I., Effekty dalnodeystviya v ionnoimplantirovannykh materialakh (Long-Range Effects in Ion-Implanted Metal Materials), Tomsk: NTL, 2004.

    Google Scholar 

  8. Borovitskaya, I.V., Ivanov, L.I., Dedyurin, A.I., Krokhin, O.N., Nikulin, V.Ya., and Tikhomirov, A.A., Effect of high temperature deuterium plasma on vanadium, Perspekt. Mater., 2003, no. 2, pp. 24–28.

    Google Scholar 

  9. Fortov, V.E., Intense shock waves and extreme states of matter, Phys.-Usp., 2007, vol. 50, pp. 333–353.

    Article  CAS  Google Scholar 

  10. Maslyaev, S.A., Numerical simulation of shock waves in solids under concentrated energy fluxes effect, Phys. Chem. Mater. Treat., 2013, no. 5, pp. 5–9.

    Google Scholar 

  11. Gribkov, V.A., Pimenov, V.N., Ivanov, L.I., Dyomina, E.V., et al., Interaction of high temperature deuterium plasma streams and fast ion beams with condensed materials in dense plasma focus device, J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 1817–1825.

    Article  CAS  Google Scholar 

  12. Gribkov, V.A., Latyshev, S.V., Maslyaev, S.A., and Pimenov, V.N., Numerical simulation of interaction of pulsed energy flux with material in plasma focus installations, Phys. Chem. Mater. Treat., 2011, no. 6, pp. 16–22.

    Google Scholar 

  13. Latyshev, S.V. Numerical Simulation of Interaction of Laser Radiation with Flat Targets, Preprint ITEP (Innov. Tech. Park), 1983, no. 66.

    Google Scholar 

  14. Zeldovich, Ya.B. and Rayzer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleny (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena) Moscow: Nauka, 1966.

    Google Scholar 

  15. Trunin, R.F., Issledovaniye ekstremalnykh sostoyany kondensirovannykh veshchestv metodom udarnykh voln (Study of Condensed Substances Extreme States by Shock Waves) Sarov, Russia: Inst. Exper. Phys., 2006.

    Google Scholar 

  16. Grigoryeva, I.S. and Meylikhova, Ye.Z., Fizicheskiye velichiny. Spravochnik (Physical Quantities. Handbook) Moscow: Energoatomizdat, 1991.

    Google Scholar 

  17. Kubes, P., Paduch, M., Piszarzyk, T., Scholz, M., Chodukowski, T., Klir, D., Kravarik, J., Rezac, K., Ivanova-Stanik, I., Karpinski, L., Tomaszewski, K., and Sadowski, M.J., Interferometric study of pinch phase in a plasma focus device at the time of neutron production, IEEE Trans. Plasma Sci., 2009, vol. 37, pp. 2191–2196.

    Article  CAS  Google Scholar 

  18. Orlenko, L.P., Fizika vzryva (Physics of Explosion), vol. 2, Moscow: FIZMATLIT, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Latyshev.

Additional information

Original Russian Text © S.V. Latyshev, V.A. Gribkov, S.A. Maslyaev, V.N. Pimenov, M. Paduch, E. Zielinska, 2014, published in Perspektivnye Materialy, 2014, No. 8, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latyshev, S.V., Gribkov, V.A., Maslyaev, S.A. et al. Generation of shock waves in materials science experiments with dense plasma focus device. Inorg. Mater. Appl. Res. 6, 91–95 (2015). https://doi.org/10.1134/S2075113315020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315020100

Keywords

Navigation