Inorganic Materials: Applied Research

, Volume 6, Issue 2, pp 91–95 | Cite as

Generation of shock waves in materials science experiments with dense plasma focus device

  • S. V. Latyshev
  • V. A. Gribkov
  • S. A. Maslyaev
  • V. N. Pimenov
  • M. Paduch
  • E. Zielinska
Physico-Chemical Principles of Materials Development


The paper presents a comparison of the results of numerical simulations of the shock wave (SW) produced inside a stainless steel plate by a powerful pulsed stream of fast ions generated in a dense plasma focus device with its experimental observations. A SW was detected for the first time in a materials science experiment directly by means of multiframe nanosecond laser interferometry. This was visualized in experiments with the PF-1000 facility after the SW went out at the rear side of the thin stainless steel plate into the residual gas atmosphere. In particular, the pressure amplitude of the SW measured by the interferometric method was 16 GPa. The observed value is in good agreement with the results of numerical simulations of the SW pressure amplitude.


shock wave powerful pulsed stream of fast ions plasma focus materials science experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondarenko, G.G., Ivanov, L.I., and Yanushkevich, V.A., Effect of giant laser pulses on aluminum microstructure, Fiz. Khim. Obrab. Mater., 1973, no. 4, pp. 19–21.Google Scholar
  2. 2.
    Larikov, L.N., Filchenko, V.M., and Mazanko, V.F., Anomalous enhance of diffusion in metals under impact loading, Dokl. Akad. Nauk SSSR. Ser. Mat. Fiz., 1975, vol. 221, pp. 1073–1075.Google Scholar
  3. 3.
    Ivanov, L.I., Litvinova, N.A., and Yanushkevich, V.A., Abnormal distribution of density of point defects formed in absorbing material by laser irradiation, Fiz. Khim. Obrab. Mater., 1976, no. 2, pp. 3–6.Google Scholar
  4. 4.
    Ivanov, L.I., Litvinova, N.A., and Yanushkevich, V.A., Depth of shock waves formation on molybdenum single crystal surface under laser radiation, Kvant. Elektron., 1977, vol. 4, pp. 204–206.Google Scholar
  5. 5.
    Kanel, G.I., Razoryonov, S.V., Utkin, A.V., and Fortov, V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh (Shock-Wave Phenomena in Condensed Media), Moscow: Yanus-K, 1996.Google Scholar
  6. 6.
    Bonyushkin, Ye.K., Zavada, N.I., Novikov, S.A., and Uchayev, A.Ya., Kinetics of dynamic metals fracture under pulse volume heating, Rep. Scientists Russ. Nucl. Cent., 1998, no. 3, p. 275.Google Scholar
  7. 7.
    Didenko, A.N., Sharkeyev, Yu.P., Kozlov, E.V., and Ryabchikov, A.I., Effekty dalnodeystviya v ionnoimplantirovannykh materialakh (Long-Range Effects in Ion-Implanted Metal Materials), Tomsk: NTL, 2004.Google Scholar
  8. 8.
    Borovitskaya, I.V., Ivanov, L.I., Dedyurin, A.I., Krokhin, O.N., Nikulin, V.Ya., and Tikhomirov, A.A., Effect of high temperature deuterium plasma on vanadium, Perspekt. Mater., 2003, no. 2, pp. 24–28.Google Scholar
  9. 9.
    Fortov, V.E., Intense shock waves and extreme states of matter, Phys.-Usp., 2007, vol. 50, pp. 333–353.CrossRefGoogle Scholar
  10. 10.
    Maslyaev, S.A., Numerical simulation of shock waves in solids under concentrated energy fluxes effect, Phys. Chem. Mater. Treat., 2013, no. 5, pp. 5–9.Google Scholar
  11. 11.
    Gribkov, V.A., Pimenov, V.N., Ivanov, L.I., Dyomina, E.V., et al., Interaction of high temperature deuterium plasma streams and fast ion beams with condensed materials in dense plasma focus device, J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 1817–1825.CrossRefGoogle Scholar
  12. 12.
    Gribkov, V.A., Latyshev, S.V., Maslyaev, S.A., and Pimenov, V.N., Numerical simulation of interaction of pulsed energy flux with material in plasma focus installations, Phys. Chem. Mater. Treat., 2011, no. 6, pp. 16–22.Google Scholar
  13. 13.
    Latyshev, S.V. Numerical Simulation of Interaction of Laser Radiation with Flat Targets, Preprint ITEP (Innov. Tech. Park), 1983, no. 66.Google Scholar
  14. 14.
    Zeldovich, Ya.B. and Rayzer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleny (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena) Moscow: Nauka, 1966.Google Scholar
  15. 15.
    Trunin, R.F., Issledovaniye ekstremalnykh sostoyany kondensirovannykh veshchestv metodom udarnykh voln (Study of Condensed Substances Extreme States by Shock Waves) Sarov, Russia: Inst. Exper. Phys., 2006.Google Scholar
  16. 16.
    Grigoryeva, I.S. and Meylikhova, Ye.Z., Fizicheskiye velichiny. Spravochnik (Physical Quantities. Handbook) Moscow: Energoatomizdat, 1991.Google Scholar
  17. 17.
    Kubes, P., Paduch, M., Piszarzyk, T., Scholz, M., Chodukowski, T., Klir, D., Kravarik, J., Rezac, K., Ivanova-Stanik, I., Karpinski, L., Tomaszewski, K., and Sadowski, M.J., Interferometric study of pinch phase in a plasma focus device at the time of neutron production, IEEE Trans. Plasma Sci., 2009, vol. 37, pp. 2191–2196.CrossRefGoogle Scholar
  18. 18.
    Orlenko, L.P., Fizika vzryva (Physics of Explosion), vol. 2, Moscow: FIZMATLIT, 2002.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. V. Latyshev
    • 1
  • V. A. Gribkov
    • 1
    • 2
  • S. A. Maslyaev
    • 1
  • V. N. Pimenov
    • 1
  • M. Paduch
    • 2
  • E. Zielinska
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Plasma Physics and Laser MicrofusionWarsawPoland

Personalised recommendations