Advertisement

Inorganic Materials: Applied Research

, Volume 5, Issue 6, pp 604–616 | Cite as

Stress-strain field calculation of reformer tube components in EP-300 pyrolysis furnaces manufactured of 45Cr26Ni33Si2Nb2 alloy and analysis of the possible mechanism of failure

  • I. P. Popova
  • A. S. Oryshchenko
  • B. Z. Margolin
  • Yu. A. Utkin
  • N. B. Gromova
Structural and Technological Strength and Materials Performance

Abstract

The paper analyzes features of the techniques for calculation of thermomechanically loaded reformer tube components in EP-300 pyrolysis furnaces under high-temperature creep. The patterns of the relationship between the tube wall temperature and coking during operation are analyzed. On the basis of the calculated temperature fields and the stress-strain field of the tubes, as well as the data on the deformation capacity and fatigue resistance of the material, the possible causes of premature failure of the reformers are considered. The authors propose a calculation method for analyzing the temperature and the stress-strain field of the reformer tube in relation to the growing coke layer, as well as the estimation of its serviceability according to the criteria of the deformation capacity and the cyclic strength.

Keywords

reformer tubes pyrolysis furnaces thermomechanical loading coking creep strain fatigue damage calculation method ratcheting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mateša, B., Samardžić, I., Bodenberger, R., Sachs, B.P., and Pecić, V., Eddy current inspection in processing furnace remaining life prediction, Proc. IIW Int. Conf., 2008, Graz, Austria, pp. 359–364.Google Scholar
  2. 2.
    Shen, Y., Failures and the life of furnace tubes, Acta Metallurgica Sinica (English Letters), 2004, vol. 17, pp. 419–425.Google Scholar
  3. 3.
    Wahab, A.A., Three-Dimensional Analysis of Creep Void Formation in Steam-Methane Reformer Tubes, Univ. Canterbury, 2007.Google Scholar
  4. 4.
    Taira, S. and Otani, R., Teoriya vysokotemperaturnoi prochnosti materialov (Theory of High-Temperature Strength of Materials), Moscow: Metallurgiya, 1986.Google Scholar
  5. 5.
    Oryshchenko, A.S., Popova, I.P., Utkin, Yu.A., and Odintsov, N.B., Evaluating performance in the steady state loading of elements of the reaction tubes of an EP-300 unit made of alloy 49H26N33S2B2, Metallurgist, 2009, vol. 53, pp. 225–228.CrossRefGoogle Scholar
  6. 6.
    Oryshchenko, A.S., Development of principles of heat-resistant alloys on the Fe-Cr-Ni base alloying and technology of molded article production from them for petrochemistry and metallurgy, Extended Abstract of Doctoral (Eng.) Dissertation, St. Petersburg, 2008, p. 55.Google Scholar
  7. 7.
    Kachanov, L.M., Teoriya polzuchesti (Theory of Creep), Moscow: Fizmatgiz, 1960.Google Scholar
  8. 8.
    Stasenko, I.V., Raschet truboprovodov na polzuchest (Calculation of Pipelines on Creep), Moscow: Mashinostroenie, 1986.Google Scholar
  9. 9.
    Gokhfel’d, D.A. and Chernyavskii, O.F., Nesushchaya sposobnost’ konstruktsii pri povtornykh nagruzheniyakh (Carrying Capacity of Construction at Repeated Loadings), Moscow: Mashinostroenie, 1979.Google Scholar
  10. 10.
    Review and Assessment of Codes and Procedures for HTGR Components, Publ. US Nucl. Reg. Comm. Contr. (NUREG CR)6816, ANL-02/36.Google Scholar
  11. 11.
    Mukhina, T.N., Barabanov, N.L., Babash, S.E., Men’shchikov, V.A., and Avrekh, G.L., Piroliz uglevodorodnogo syr’ya (Pirolysis of Hydrocarbon Raw Material), Moscow: Khimiya, 1987.Google Scholar
  12. 12.
    Kuzeev, I.R., Bayazitov, M.I., Kulikov, D.V., and Chirkova, A.G., Vysokotemperaturnye protsessy i apparaty dlya pererabotki uglevodorodnogo syr’ya (High-Temperature Processes and Equipment for Hydrocarbon Raw Material Treatment), Ufa, 1999.Google Scholar
  13. 13.
    Fernandez-Baujin, J.M. and Solomon, S.M., New reactor design offers benefits, Oil Gas J., 1976, vol. 74, pp. 94–95.Google Scholar
  14. 14.
    Mkhitaryan, A.M., Aerodinamika (Aerodynamics), Moscow: Mashinostroenie, 1976.Google Scholar
  15. 15.
    Entus, N.R. and Sharikhin, V.V., Trubchatye pechi v neftepererabatyvayushchei i neftekhimicheskoi promyshlennosti (Tube Furnaces in Oil Treatment and Oil Chemical Industry), Moscow: Khimiya, 1987.Google Scholar
  16. 16.
    Kuleshov, O.Yu. and Sedelkin, V.M., Computational analysis of local heat-release rate of water-wall tube in reaction tube furnaces, Chem. Petrol. Eng., 2012, vol. 48, pp. 285–290.CrossRefGoogle Scholar
  17. 17.
    Steel Casting Handbook. High Alloy Data Sheets, Heat Series, Steel Founders’ Soc. Am., 2004. Suppl. 9.Google Scholar
  18. 18.
    Oryshchenko, A.S. and Utkin, Yu.A., Influence of change of microstructure at temperatures 800–1100°C on characteristics of high-temperature strength of alloy 45X26H33C2B2, Vopr. Materialoved., 2009, No. 3, pp. 17–25.Google Scholar
  19. 19.
    Margolin, B.Z., Buchatsky, A.A., Gulenko, A.G., Fedorova, V.A., and Filatov, V.M., Prediction of fatigue fracture resistance of austenite steels under elasto-plastic deformation, creep and neutron irradiation, Vopr. Materialoved., 2008, No. 3, pp. 72–88.Google Scholar
  20. 20.
    Popova, I.P., Oryshchenko, A.S., and Getsov, L.B., A computational method to determine creep characteristics of first and second deformation stage using limited number of isochronal creep curves, Inorg. Mater. Appl. Res., 2011, vol. 2, pp. 640–650.CrossRefGoogle Scholar
  21. 21.
    Voicu, R., Lacaze, J. Andrieu, E., Poquillon, D., and Furtado, J., Creep and tensile behavior of austenitic Fe-Cr-Ni stainless steels, Mater. Sci. Eng.: A, 2009, vol. 510–511, pp. 185–189.CrossRefGoogle Scholar
  22. 22.
    Kitain, V.V., Gusenkov, A.P., Gavrilov, P., and Kazantsev, A.G., Rupture strength under complex low-cicle loading conditions, Problemy Prochnosti 1989, No. 4, pp. 3–8.Google Scholar
  23. 23.
    Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok PNAE G-7-002-86 (Norms of Strength Calculation of Equipment and Pipelines of Atomic Energetic PNAE G-7-002-86 Units), Moscow: Energoatomizdat, 1989.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. P. Popova
    • 1
  • A. S. Oryshchenko
    • 1
  • B. Z. Margolin
    • 1
  • Yu. A. Utkin
    • 1
  • N. B. Gromova
    • 1
  1. 1.Central Research Institute of Structural Materials PROMETEYSt. PetersburgRussia

Personalised recommendations