Advertisement

Inorganic Materials: Applied Research

, Volume 5, Issue 4, pp 372–381 | Cite as

Structure and conductivity of nanocomposites formed on evaporation of drops of silver nanoparticle dispersion

  • V. V. Vysotskii
  • O. Ya. Uryupina
  • M. V. Shamurina
  • T. M. Shuman
  • I. N. Senchikhin
Article
  • 34 Downloads

Abstract

Conductive properties of deposits formed on evaporation of drops of silver nanoparticle dispersions were investigated. Deposits comprised two ringlike structures formed along the perimeter of the evaporating drop with the width of the first one being on the order of a few tens of microns and the second one being several hundred microns. It was shown that only the outer ringlike deposit conducted current. Dependences of its conductivity on the precursor content and on the size and concentration of nanoparticles in the initial colloidal solution were investigated, which were found to be similar to the percolation transition. Regularities of the deposit formation and the charge transfer mechanisms were discussed under the assumption that the investigated ringlike deposit represented a metal-polymer composite.

Keywords

nanocomposites nanoparticles electrical conductivity percolation transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roldugin, V.I., Self-assembly of nanoparticles at interfaces, Russ. Chem. Rev., 2004, vol. 73, pp. 115–145.CrossRefGoogle Scholar
  2. 2.
    Rapis, E.G., A change in the physical state of a nonequilibrium blood plasma protein film in patients with carcinoma, Techn. Phys., 2002, vol. 47, pp. 510–512.CrossRefGoogle Scholar
  3. 3.
    Andreeva, L.V., Novoselova, P.V., Lebedev-Stepanov, P.V., Ivanov, D.A., Koshkin, A.V., Petrov, A.N., and Alfimov, M.V., Crystallization of solutes from droplets, Techn. Phys., 2007, vol. 52, pp. 164–172.CrossRefGoogle Scholar
  4. 4.
    Deegan, R.G., Phys. Rev. E: Stat. Phys., Nonlin. Soft Mat., 2000, vol. 61, pp. 475–489.CrossRefGoogle Scholar
  5. 5.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Contact line deposits in an evaporating drop, Phys. Rev. E: Stat. Phys., Nonlin. Soft Mat., 2000, vol. 62, pp. 756–765.CrossRefGoogle Scholar
  6. 6.
    Porov, Y.O., Phys. Rev. E: Stat. Nonlin. Soft Mat., 2005, vol. 71, pp. 1–17.Google Scholar
  7. 7.
    Vysotskii, V.V., Uryupina, O.Ya., Roldugin, V.I., and Plachev, Yu.A., Formation of silver nanoparticles in aqueous carboxymethyl cellulose and the evolution of their sizes, Colloid J., 2009, vol. 71, pp. 156–162.CrossRefGoogle Scholar
  8. 8.
    Vysotskii, V.V., Uryupina, O.Ya., Gusel’nikova, A.V., and Roldugin, V.I., On the feasibility of determining nanoparticle concentration by dynamic light scattering method, Colloid J., 2009, vol. 71, pp. 739–744.CrossRefGoogle Scholar
  9. 9.
    Sharma, A., Equilibrium and dynamics of evaporating or condensing thin fluid domains: Thin film stability and heterogeneous nucleation, Langmuir, 1998, vol. 14, pp. 4915–4928.CrossRefGoogle Scholar
  10. 10.
    Vysotskii, V.V. and Roldugin, V.I., Structure and percolation properties of conducting film composites, Colloid J., 1998, vol. 60, pp. 673–688.Google Scholar
  11. 11.
    Kao, K.C. and Huang, W., Electrical Transport in Solids-with Particular Reference to Organic Semiconductors, Oxford, England: Pergamon, 1981, Vol. 14.Google Scholar
  12. 12.
    Lachinov, A.N. and Vorob’eva, N.V., Electronics of thin wideband polymer layers, Phys.-Uspekh., 2006, vol. 49, pp. 1223–1238.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Vysotskii
    • 1
  • O. Ya. Uryupina
    • 1
  • M. V. Shamurina
    • 1
  • T. M. Shuman
    • 1
  • I. N. Senchikhin
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations