Advertisement

Inorganic Materials: Applied Research

, Volume 5, Issue 1, pp 14–21 | Cite as

Relation of absorption band edge of rutile films and their structure

  • V. M. Ievlev
  • S. B. Kushchev
  • A. N. Latyshev
  • O. V. Ovchinnikov
  • L. Yu. Leonova
  • K. A. Solntsev
  • S. A. Soldatenko
  • M. S. Smirnov
  • A. A. Sinelnikov
  • A. M. Vozgorkov
  • M. A. Ivikova
Article

Abstract

Oriented films of TiO2 (rutile) were fabricated by oxidation of monocrystal films of pure titanium and those doped with nickel. Oxidation was performed in an atmosphere of pure oxygen or air. Oriented structures were obtained in both cases at the same temperatures. The dependence of optical absorption spectra from the grain (subgrain) size was established. Titanium oxide synthesized in air atmosphere is characterized by a shift in the absorption band edge to the low-energy side, whereas doping with nickel increases the band gap.

Keywords

titanium oxidation rutile orientation substructure thin films doping absorption band edge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hashimoto, K., Irie, H., and Fujishima, A., TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys., 2005, vol. 44, pp. 8269–8285.CrossRefGoogle Scholar
  2. 2.
    Wang, X., Feng, Zh., Shi, J., Jia, G., Shen, S., Zhou, J., and Li, C., Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition, Phys. Chem. Chem. Phys., 2010, no. 12, pp. 7083–7090.Google Scholar
  3. 3.
    Xiaobo, Chen and Samuel, S.M., Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 2007, vol. 107, pp. 2891–2959.CrossRefGoogle Scholar
  4. 4.
    Ghamsari, M.S. and Bahramian, A.R., High transparent sol-gel derived nanostructured TiO2 thin film, Mater. Lett., 2008, vol. 62, pp. 361–364.CrossRefGoogle Scholar
  5. 5.
    Liau, L..C.-K., Lin, C.-C., Semiconductor characterization of Cr3+-doped titania electrodes with p-n homojunction devices, Thin Solid Films, 2008, vol. 516, pp. 1998–2002.CrossRefGoogle Scholar
  6. 6.
    Mowbray, D.J., et al., Stability and electronic properties of TiO2 nanostructures with and without B and N doping, J. Phys. Chem. C, 2009, vol. 113, pp. 12301–12308.CrossRefGoogle Scholar
  7. 7.
    Hasan, M.M., Haseeb, A.S., Saidur, R., and Masjuki, H.H., Effects of annealing treatment on optical properties of anatase TiO2 thin films, Int. J. Chem. Biolog. Eng., 2008, nos. 1–2, pp. 92–96.Google Scholar
  8. 8.
    Amor, S.B., Baud, G., Jacquet, M., and Pichon, N., Photoprotective titania coatings on PET substrates, Surf. Coat. Technol., 1998, vol. 102, pp. 63–72.CrossRefGoogle Scholar
  9. 9.
    Cordona, M. and Harbeke, G., Optical properties and band structure of wurtzite-type crystals and rutile, Phys. Rev., 1965, vol. 137, pp. A1467–A1476.CrossRefGoogle Scholar
  10. 10.
    Pascual, J., Camassel, J., and Mathieu, H., Fine structure in the intrinsic absorption edge of TiO2, Phys. Rev. B: Solid State, 1978, vol. 18, pp. 5606–5614.CrossRefGoogle Scholar
  11. 11.
    Glassford, K.M. and Chelikowsky, J.R., Structural and electronic properties of titanium dioxide, Phys. Rev. B: Condens. Matter, 1992, vol. 46, pp. 1284–1298.CrossRefGoogle Scholar
  12. 12.
    Asthanaa, A., Shokuhfara, T., Gaoa, Q., Heidena, P.A., Friedricha, C., and Yassara, R.S., A real time observation of phase transition of anatase TiO2 nanotubes into rutile particles by in situ joule heating inside transmission electron microscope, Microsc. Microanal., 2010, vol. 16, pp. 1360–1361.CrossRefGoogle Scholar
  13. 13.
    Hirakawa, E. and Kamat, P.V., Charge separation and catalytic activity of Ag/TiO core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc., 2005, vol. 127, p. 3928.CrossRefGoogle Scholar
  14. 14.
    Choi, J., Park, H., and Hoffman, M.R., Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with light irradiation, J. Mater. Res., 2010, vol. 25, pp. 149–158.CrossRefGoogle Scholar
  15. 15.
    Shimanovska, V., Kernazhitsky, L., Puchkovska, G., Naumov, V., Khalyavka, T., Kshnyakin, V., Kshnyakina, S., and Chernyak, The impurity ion influence on the optical and photocatalytic properties of anatase and rutile, J. NanoElectron. Phys., 2011, vol. 3, pp. 63–73.Google Scholar
  16. 16.
    Perevalov, T.V. and Gritsenko, V.A., Application and electronic structure of high-permittivity dielectrics, Phys.-Usp., 2010, vol. 53, pp. 561–575.CrossRefGoogle Scholar
  17. 17.
    Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J., Electronic and optical properties of anatase TiO2, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, pp. 7459–7465.CrossRefGoogle Scholar
  18. 18.
    Mo, S.-D. and Ching, W.Y., Electronic and optical properties of three phases of titanium dioxide: Rutil, anatase and brookite, Phys. Rev. B: Condens. Matter, 1995, vol. 51, pp. 13023–13032.CrossRefGoogle Scholar
  19. 19.
    Randeniya, L.K., Bendavid, A., Martin, P.J., and Preston, E.W., Photo electrochemical and structural properties of TiO2 and n-doped TiO2 thin films synthesized using pused plasma-activated chemical vapor deposition, J. Phys. Chem. C, 2007, vol. 111, pp. 18334–18340.CrossRefGoogle Scholar
  20. 20.
    Ievlev, V.M., Bugakov, A.V., and Urazova, O.A., Expert system of optimal orientation correlations forecasting on the interface in film heterosystems, Vest. Voron. Goa. Tekh. Univ., Ser. Materialoved., 2003, no. 1.4, pp. 28–32.Google Scholar
  21. 21.
    Ievlev, V.M., Solntsev, K.A., Soldatenko, S.A., Leonova, L.Yu., Novikov, P.V., Golosov, E.V., Sinelnikov, A.A., and Vozgorkov, A.M., Orientation, substructure, and optical properties of rutile films, Inorg. Mater.: Appl. Res., 2012, vol. 3, pp. 282–287.CrossRefGoogle Scholar
  22. 22.
    Smirnov, M.S., Ovchinnikov, O.V., Kosyakova, E.A., Latyshev, A.N., Klinskikh, A.F., Tat’yanina, E.P., Novikov, P.V., and Hai, M., Low-threshold up-conversion luminescence in ZnxCd1 − xS with oxidized surface, Physica B.: Cond. Mat., 2009, vol. 404, pp. 5013–5015.CrossRefGoogle Scholar
  23. 23.
    Ievlev, V.M., Tonkie plenki neorganicheskikh materialov: mekhanizm rosta i struktura. Uch. posobie (Thin Films of Inorganic Mater.: Growth Mechanism and Structure. A Tutorial), Voronezh: Voron. Gos. Univ., 2008.Google Scholar
  24. 24.
    Berger, T.A., J., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, S., Thompson, T.L., and Yates, Jr., J.T., Light-induced charge separation in anatase TiO2 particles, J. Phys. Chem. B., 2005, vol. 109, pp. 6061–6068.CrossRefGoogle Scholar
  25. 25.
    Zhao, Z. and Liu, Q., Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 025105.CrossRefGoogle Scholar
  26. 26.
    Gribkovskii, V.P., Teoriya pogloshcheniya i ispuskaniya sveta v poluprovodnikakh (Theory of Light Absorption and Emanation in Semiconductors), Moscow: Nauka Tekh., 1975.Google Scholar
  27. 27.
    Anpo, M., Tomonary, M., and Fox, M.A., In situ photoluminescence of TiO2 as a probe of photocatalitic reaction, J. Phys. Chem., 1989, vol. 93, pp. 7300–7302.CrossRefGoogle Scholar
  28. 28.
    Forss, L. and Schubnell, M., Temperature dependence of the luminescence of TiO2 powder, Appl. Phys. B, 1993, vol. 56, pp. 363–366.CrossRefGoogle Scholar
  29. 29.
    Montocello, F. Carrota, M.C., et al., Near-infrared photoluminescence in titania: Evidence for phononreplica effect, J. Appl. Phys., 2003, vol. 94, pp. 1501–1505.CrossRefGoogle Scholar
  30. 30.
    Guidi, V. Carrota, M.C., et al., Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile, J. Phys. Chem. B., 2003, vol. 107, pp. 120–124.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. M. Ievlev
    • 1
    • 2
  • S. B. Kushchev
    • 3
  • A. N. Latyshev
    • 1
  • O. V. Ovchinnikov
    • 1
  • L. Yu. Leonova
    • 1
  • K. A. Solntsev
    • 2
  • S. A. Soldatenko
    • 3
  • M. S. Smirnov
    • 1
  • A. A. Sinelnikov
    • 1
  • A. M. Vozgorkov
    • 3
  • M. A. Ivikova
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations