Advertisement

Inorganic Materials: Applied Research

, Volume 4, Issue 6, pp 562–574 | Cite as

Effect of long-term operational aging on the mechanical properties and microstructure of austenitic 18Cr-9Ni steel and the weld metal

  • I. P. Kursevich
  • B. Z. Margolin
  • O. Yu. Prokoshev
  • V. I. Smirnov
  • V. A. Fedorova
  • E. V. Nesterova
  • S. N. Petrov
Structural and Operational Strength and Efficiency of Materials
  • 65 Downloads

Abstract

The properties of materials of the heat-exchange equipment components of the fast breeder reactor BN-600 after 130000–170000 h of operation at 500–550°C are studied. The effect of long-term aging on the strength, ductility, impact strength, and fracture toughness of 18Cr-9Ni steel (type 304 stainless steel) and its welds is examined. The mechanisms that give rise to changes in the mechanical properties are analyzed on the basis of microstructural and fractographic studies. The predicted degradation of material properties is estimated as a function of operating temperature and time.

Keywords

austenitic steel heat-exchange equipment long-term aging prediction of degradation of properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horak, J.A., Sikka, V.K., and Raske, D.T., Review of effects of long-term aging on the mechanical properties and microstructures of types 304 and 316 stainless steel, Proc. Int. Conf. on Nuclear Power Plant Aging, Variability Factor and Reliability Analysis, San Diego: Ca, 1983.Google Scholar
  2. 2.
    Lanin, A.A., Anan’eva, M.A., Galyatkin, S.N., and Zelenin, Yu.V., Nature and methods of welded joint resistance determination contra brittle fracture, Vopr. Materialoved., 2007, no. 3, pp. 320–326.Google Scholar
  3. 3.
    Gill, T.P.S., Vijayalakshmi, M., Gnanamoorthy, J.B., and Padmanabhan, K.A., Transformation of delta-ferrite during the postweld heat treatment of type 316L stainless steel weld metal, Welding J., 1986, vol. 65, pp. 104–110.Google Scholar
  4. 4.
    Minami, Y., Kimura, H., and Ihara, Y., Microstructural changes in austenitic steels during long-term aging, Mater. Sci. Technol., 1986, vol. 2, pp. 795–806.CrossRefGoogle Scholar
  5. 5.
    Prokoshev, O.Yu., Kursevich, I.P., and Nesterova, E.V., Effect of prolonged temperature action on mechanical properties and microstructure of 09Kh18N9 steel, Vopr. Materialoved., 2000, no. 3, pp. 29–34.Google Scholar
  6. 6.
    Grishmanovskaya, R.N., Kudryavtsev, A.S., and Markov, V.G., Estimation of Kh18N9 and Kh16N11M3 steel property change after the exploitation during 130000 hours in the RU BN-600 industrial vapor syperheater, Trudy 9-i mezhdunarodnoi konferentsii “Problemy materialovedeniya pri proektirovanii, izgotovlenii i ekspluatatsii AES,” (Proc. 9th Int. Conf. “Problems of Material Science at Design, Construction and Exploitation of Nuclear Energetic Stations), Pushkin (Russia), 2006, vol. 2, pp. 290–298.Google Scholar
  7. 7.
    RD153-34.1-17.467-2001 Ekspressnyi metod otsenki ostatochnogo resursa svarnykh soedinenii kollektorov kotlov i paroprovodov po strukturnomu faktoru (Express Method of Estimation of Residual Resource of Welded Joints of Drum Heads and Steampipes According to Structural Factor), Moscow, 2001.Google Scholar
  8. 8.
    GOST (State Standard): 25.506-85. Methods of Mechanical Testing of Metals. Determination of Fracture Toughness at Static Loading), 1985.Google Scholar
  9. 9.
    ASTM E1820-01 Standard Test Method for Measurement of Fracture Toughness, Annual Book of ASTM Standards, V. 03.01, pp. 809–839.Google Scholar
  10. 10.
    Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Large Plastic Deformations and Fracture of Metals), Moscow: Metallurgiya, 1986.Google Scholar
  11. 11.
    Gadzhibalaev, G.A., Gulyaev, A.P., and Lebedev, D.V., Viscosity Cr-Ni and Cr-Mn austenite steels at law temperatures, Metalloved. Termich. Obrab. Metal., 1973, no. 9, pp. 8–11.Google Scholar
  12. 12.
    Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., Lapin, A.N., Kohonov, V.I., and Neustroev, V.S., To the problem of irradiation-induced swelling and irradiation embrittlement of austenite steels. Part II. The basic physical and mechanical regularities of embrittlement, Vopr. Materialov., 2009, no. 2, pp. 99–111.Google Scholar
  13. 13.
    Sorokin, A.A., Margolin, B.Z., Kursevich, I.P., Minkin, A.I., Neustroev, V.S., and Belozerov, S.V., Effects of neutron irradiation upon mechanical properties of materials for reactor internals of WWER type, Vopr. Materialoved., 2011, no. 2, pp. 131–15Google Scholar
  14. 14.
    Margolin, B.Z., Shvetsova, V.A., Prokoshev, O.Yu., Kursevich, I.P., Smirnov, V.I., and Minkin, A.I., Characteristics of anticorrosive cladding for calculating resistance to brittle failure of reactor vessel, Vopr. Materialoved., 2005, no. 2, pp. 186–213.Google Scholar
  15. 15.
    Anan’eva, M.A., Bozina, L.A., Ivanov, G.A., et al., Study of properties of welded joints from 09Kh18N9 and 09Kh16N9M2 steels after prolonged exploitation (on ChTETs-1 pipeline) at increased temperature, Sudostroit. Promyshl. Ser. Svarka, 1991, no. 11, pp. 24–37.Google Scholar
  16. 16.
    Mills, W.J., Fracture toughness of aged stainless steel primary piping and reactor vessel materials, J. Press. Vess. Technol., 1987, vol. 109, pp. 440–448.CrossRefGoogle Scholar
  17. 17.
    Mills, W.J., Effect of loading rate and thermal aging on the fracture toughness of stainless steel alloys, Am. Soc. Test. Mater., 1989, vol, 1020, pp. 459–475.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. P. Kursevich
    • 1
  • B. Z. Margolin
    • 1
  • O. Yu. Prokoshev
    • 1
  • V. I. Smirnov
    • 1
  • V. A. Fedorova
    • 1
  • E. V. Nesterova
    • 1
  • S. N. Petrov
    • 1
  1. 1.Central Research Institute of Structural Materials “Prometey,”St. PetersburgRussia

Personalised recommendations