Inorganic Materials: Applied Research

, Volume 4, Issue 4, pp 356–361 | Cite as

Thermochemical gypsum conversion forming calcium phosphates

  • M. A. Goldberg
  • V. V. Smirnov
  • S. M. Barinov
  • E. N. Antonov
  • V. N. Bagratashvili
  • A. S. Fomin
  • N. V. Petrakova
  • A. Yu. Fedotov
  • D. D. Titov
Article

Abstract

A study was carried out on effect of the conditions of physicochemical conversion of a porous gypsum intermediate product to calcium phosphates. Depending on the initial conditions of sample preparation, the materials around hydroxyapatite and dicalcium phosphate were obtained. The conducted thermal analysis and dilatometric studies made it possible to propose the conditions of thermal treatment preventing shrinkage and deformation of samples. After thermal treatment at 1000°C, fine crystalline porous materials were obtained with crystal size between 0.5 and 2 μm and pore size up to 50 μm on the basis of β-tricalcium phosphate with strength up to 2.8 MPa. The developed pore structure and fairly high strength make it possible to use the developed materials based on tricalcium phosphate to obtain biomaterials for the replacement of defects in bone tissue.

Keywords

gypsum hyroxyapatite β-tricalcium phosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hench, L.L. and Polak, J.M., Third-generation biomedical materials, Science, 2002, vol. 295, pp. 1014–1017.CrossRefGoogle Scholar
  2. 2.
    Hollister, S.J., Scaffold design and manufacturing: From concept to clinic, Adv. Mater., 2009, vol. 21, pp. 3330–3342.CrossRefGoogle Scholar
  3. 3.
    Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Bioceramics on the Basis of Calcium Phosphates), Moscow: Nauka, 2005.Google Scholar
  4. 4.
    Butcher, A., Bohner, M., Hofmann, S., et al., Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta Biomater., 2011, vol. 7, pp. 907–920.CrossRefGoogle Scholar
  5. 5.
    Lowmunkong, R., Sohmura, T., Takahashi, J., et al., Transformation of 3DP gypsum model to HA by treating in ammonium phosphate solution, J. Biomed. Mater. Res. Part B: Appl. Biomater., 2007, vol. 80, pp. 386–393.CrossRefGoogle Scholar
  6. 6.
    Lowmunkong, R., Sohmura, T., Suzuki, Y., et al., Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method, J. Biomed. Mater. Res. Part B: Appl. Biomater., 2009, vol. 90, pp. 531–539.CrossRefGoogle Scholar
  7. 7.
    Fisher, R.D. and Walton, R.I., Time and position resolved in situ X-ray diffraction study of the hydrothermal conversion of gypsum monoliths to hydroxyapatite, Dalton Trans., 2009, vîl. 38, pp. 8079–8086.CrossRefGoogle Scholar
  8. 8.
    Bingol, O.R., and Durucan, C., Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate, Am. J. Biomed. Sci., 2012, vol. 4, pp. 50–59.CrossRefGoogle Scholar
  9. 9.
    Zaman, C.T., Takeuchi, A., Matsuya, S., et al., Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite, Dent. Mater. J., 2008, vol. 27, pp. 710–715.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. A. Goldberg
    • 1
  • V. V. Smirnov
    • 1
  • S. M. Barinov
    • 1
  • E. N. Antonov
    • 2
  • V. N. Bagratashvili
    • 2
  • A. S. Fomin
    • 1
  • N. V. Petrakova
    • 1
  • A. Yu. Fedotov
    • 1
  • D. D. Titov
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Laser and Information Technology ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations