Inorganic Materials: Applied Research

, Volume 4, Issue 1, pp 12–20 | Cite as

Application of microstructured intermetallides in turbine manufacture. Part 1: Present state and prospects (a review)

  • A. V. Kartavykh
  • S. D. Kaloshkin
  • V. V. Cherdyntsev
  • M. V. Gorshenkov
  • T. A. Sviridova
  • Yu. V. Borisova
  • F. S. Senatov
  • A. V. Maksimkin
Article

Abstract

The objective of the present work is the analysis of the present state and prospects of the development of competitive technologies for creating microstructured materials of the class of intermetallides and their application in turbine and engine manufacture. The present review examines the general strategy of the development of the industry of heat-resistant materials of the class of intermetallides. A comparative analysis of the specific properties, advantages, and disadvantages of titanium, nickel, and iron aluminides and transition metals (Nb, Mo, and Ti) silicides in view of their application in construction of aircraft engines and gas-burning power-generating turbines is performed. The state and prospects of the development of competitive pilot technologies of manufacture and application of the above materials are analyzed.

Keywords

heat-resistant construction materials aluminides silicides structural composites microstructure turbine manufacture aircraft engine manufacture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, J.-C. and Westbrook, J.H., Ultrahigh-Temperature Materials for Jet Engines, Mater. Res. Soc. Bull., 2003, no. 9, pp. 622–630.Google Scholar
  2. 2.
    Westbrook, J.H., Dislocations in Solids. Vol. 10, Nabaroo, F.R.N. and Duesbery, M.S., Eds., Amsterdam: Elsevier, 1996, pp. 3–12.Google Scholar
  3. 3.
    Klopp, W.D., The Superalloys, Sims, C.T. and Hagel, W.C., Eds., New York: Wiley, 1972, p. 175.Google Scholar
  4. 4.
    Ro, Y., Koizumi, Y., Nakazawa, S., Kobayashi, T., Bannai, E., and Harada, H., Development of Cr-Base Alloys and Their Compressive Properties, Scripta Mater., 2002, vol. 46, pp. 331–337.CrossRefGoogle Scholar
  5. 5.
    Sims, C.T., Stoloff, N.S., and Hagel, W.C., Superalloys II, New York: Wiley, 1987.Google Scholar
  6. 6.
    Huang, S.-C. and Chesnutt, J.C., in Intermetallic Compounds: Principles and Practice. Vol. 2, Westbrook, J.H. and Fleischer, R.L., Eds., New York: Wiley, 1995, pp. 73–88.Google Scholar
  7. 7.
    Kim, Y.-W., Wagner, R., and Yamaguchi, M., Gamma Titanium Aluminides, Warrendale: The Minerals, Metals and Materials Soc., 1995.Google Scholar
  8. 8.
    Kim, Y.-W., Dimiduk, D.M., and Loretto, M., Gamma Titanium Aluminides, 1999, Warrendale: The Minerals, Metals and Materials Soc., 2000.Google Scholar
  9. 9.
    Kim, Y.-W. and Rosenberger, A.H., Gamma Titanium Aluminides, 2003, Warrendale: The Minerals, Metals and Materials Soc., 2004.Google Scholar
  10. 10.
    Miracle, D.B. and Darolia, R., in Intermetallic Compounds: Principles and Practice. Vol. 2, Westbrook, J.H. and Fleischer, R.L., Eds., New York: Wiley, 1995, p. 53.Google Scholar
  11. 11.
    Noebe, R.D. and Walston, W.S., in Structural Intermetallics, 1997 (ISSI-2), Nathal, M.V., Darolia, R., Liu, C.T., et al., Eds., Warrendale: The Minerals, Metals and Materials Soc., 1997.Google Scholar
  12. 12.
    Palm, M. and Sauthoff, G., in Structural Intermetallics, 2001 (ISSI-3), Hemker, K.J., Dimiduk, D.M., Clemens, H., et al., Eds., The Minerals, Metals and Materials Soc., 2002, p. 149.Google Scholar
  13. 13.
    Walston, W.S. and Darolia, R., in Structural Intermetallics, 2001(ISSI-3), Hemker, K.J., Dimiduk, D.M., Clemens, H., et al., Eds., The Minerals, Metals and Materials Soc., 2002, p. 735.Google Scholar
  14. 14.
    Whittenberger, J.D., Raj, S.V., Locci, I.E., and Salem, J.A., in Structural Intermetallics, 2001, (ISSI-3), Hemker, K.J., Dimiduk, D.M., Clemens, H., et al., Eds., The Minerals, Metals and Materials Soc., 2002, p. 775.Google Scholar
  15. 15.
    Raj, S.V., Locci, I.E., and Whittenberger, J.D., in Structural Intermetallics, 2001(ISSI-3), Hemker, K.J., Dimiduk, D.M., Clemens, H., et al., Eds., The Minerals, Metals and Materials Soc., 2002, p. 785.Google Scholar
  16. 16.
    Wolff, M., Sauthoff, G., Cornish, L.A., De, H., Syeyn, V., and Coetzee, R., in Structural Intermetallics, 1997 (ISSI-2), Nathal, M.V., Darolia, R., Liu, C.T., et al., Eds., Warrendale: The Minerals, Metals and Materials Soc., 1997, p. 815.Google Scholar
  17. 17.
    Wolff, I.M., in Intermetallic Compounds: Principles and Practice. Vol. 3, Westbrook, J.H. and Fleischer, R.L., Eds., New York: Wiley, 2002, p. 53.CrossRefGoogle Scholar
  18. 18.
    Yamabe-Mitarai, Y., Ro, Y., Maruko, T., Yokokawa, T., and Harada, H., in Structural Intermetallics, 1997 (ISSI-2), Nathal, M.V., Darolia, R., Liu, C.T., et al., Eds., Warrendale: The Minerals, Metals and Materials Soc., 1997, p. 805.Google Scholar
  19. 19.
    Miracle, D.B. and Donaldson, S.L., ASM Handbook, vol. 21. Composites, Miracle, D.N. and Donaldson, S.L., Eds., Materials Park: ASM International, 2001, p. 3.Google Scholar
  20. 20.
    Lipsitt, H.A., Balckburn, M.J., and Dimiduk, D.M., in Intermetallic Compounds: Principles and Practice. Vol. 3, Westbrook, J.H. and Fleischer, R.L., Eds., New York: Wiley, 2002, p. 471.CrossRefGoogle Scholar
  21. 21.
    Yamada, K. and Kamiya, N., High Temperature Mechanical Properties of Si3N4-MoSi2 and Si3N4-SiC Composites with Network Structures of Second Phases, Mater. Sci. Eng. A, 1999, vol. 261, pp. 270–277.CrossRefGoogle Scholar
  22. 22.
    Robinson, R.C. and Smialek, J.L., SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: I, Experimental Results and Empirical Model, J. Am. Ceram. Soc., 1999, vol. 82, p. 1817–1825.CrossRefGoogle Scholar
  23. 23.
    Waku, Y., A New Ceramic Eutectic Composite with High Strength at 1873 K, Adv. Mater., 1998, vol. 10, pp. 615–617.CrossRefGoogle Scholar
  24. 24.
    Erickson, G.L., A New Third Generation Single-Crystal Casting Superalloy, J. Metals, 1995, vol. 47, no. 4, pp. 36–39.Google Scholar
  25. 25.
    Gu, Y.F., Yamabe-Mitarai, Y., Nakazawa, et al., Microstructures and Mechanical Properties of (Ir, Rh) 75Nb15Ni10 Alloys, Metall. Mater. Trans. A, 2002, vol. 33, pp. 1281–1283.CrossRefGoogle Scholar
  26. 26.
    Corman, G.S., Brun, M.K., and Luthra, K.L., SiC Fiber Reinforced SiC-Si Matrix Composites Prepared by Melt Infiltration (MI) for Gas Turbine Engine Applications, Proc. Int. Gas Turbine and Aeroengine Congress and Exhibition, New York: ASME International, 1999, no. 99-GT-234.Google Scholar
  27. 27.
    Corman, G.S., Dean, A.J., Brabetz, S., et al., Rig and Engine Testing of Melt Infiltrated Ceramic Composites for Combustor and Shroud Applications, J. Eng. Gas Turb. Power-Transact. ASME, 2002, vol. 124, pp. 459–467.CrossRefGoogle Scholar
  28. 28.
    Luthra, K.L. and Corman, G.S., High Temperature Ceramic Matix Composites, Krenkel, W., Naslain, R., and Schneider, H., Eds., Weinheim: Wiley, 2001.Google Scholar
  29. 29.
    Hill, P.J., Yamabe-Mitarai, Y., Murakami, H., et al., in Structural Intermetallics, 2001(ISSI-3), Hemker, K.J., Dimiduk, D.M., Clemens, H., et al., Eds., Warrendale: The Minerals, Metals and Materials Soc., 2002.Google Scholar
  30. 30.
    Fischer, B., New Platinum Materials for High Temperature Applications, Adv. Eng. Mater., 2001, vol. 3, pp. 811–820.CrossRefGoogle Scholar
  31. 31.
    Ito, K., Kumagai, M., Hayashi, T., and Yamaguchi, M., Room Temperature Fracture Toughness and High Temperature Strength of T2/Moss and (Mo,Nb)ss/T1/T2 Eutectic Alloys in the Mo-Si-B System, Scripta Mater., 2003, vol. 49, pp. 285–291.CrossRefGoogle Scholar
  32. 32.
    Drawin, S. and Justin, J.F., Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications, Onera — the French Aerospace Lab. J., 2011, vol. 3, pp. 1–13.Google Scholar
  33. 33.
  34. 34.
  35. 35.
    Tschaffon, H., in Materials for Advanced Power Engineering 2006, Lecomte-Beckers, J., Ed., Liege: Forschungszentrum Julich, 2006, pp. 61–67.Google Scholar
  36. 36.
    Wheeldon, J., Dillon, D., and Parkes, J., Materials for Advanced Power Engineering 2006, Lecomte-Beckers, J., Ed., Liege: Forschungszentrum Julich, 2006, pp. 893–915.Google Scholar
  37. 37.
    Gibbons, T.B., Superalloys in Modern Power Generation Applications, Mater. Sci. Technol., 2009, vol. 25, pp. 129–135.CrossRefGoogle Scholar
  38. 38.
    Sato, A., Yeh, A.-C., Kobayashi, T., et al., Materials for Advanced Power Engineering 2006, Lecomte-Beckers, J., Ed., Liege: Forschungszentrum Julich, 2006, pp. 287–298.Google Scholar
  39. 39.
    Bohn, D., SFB 561: Aiming for 65% CC Efficiency with Air-Cooled GT, Modern Power Sys., 2006, vol. 26, no. 9, pp. 25–29.Google Scholar
  40. 40.
    Tetsui, T., Development of a TiAl Turbocharger for Passenger Vehicles, Mater. Sci. Eng. A, 2002, vol. 329–331, pp. 582–588.Google Scholar
  41. 41.
    Cui, W.F., Liu, C.M., Bauer, V., and Christ, H.J., Thermomechanical Fatigue Behaviors of a Third Generation γ-TiAl Based Alloy, Intermetallics, 2007, vol. 15, pp. 675–678.CrossRefGoogle Scholar
  42. 42.
    Froes, F.H., Friedrich, H., Kiese, J., and Bergoint, D., Titanium in the Family Automobile: The Cost Challenge, J. of Metals, 2004, vol. 56, no. 2, pp. 40–44.Google Scholar
  43. 43.
    Peters, M., Kumpfert, J., Ward, C.H., and Leyens, C., Titanium Alloys for Aerospace Applications, Adv. Eng. Mater., 2003, vol. 5, pp. 419–427.CrossRefGoogle Scholar
  44. 44.
    Froes, F.H.S., Gungor, M.N., and Imam, M.A., Cost-Affordable Titanium: The Component Fabrication Perspective, J. of Metals, 2007, vol. 59, no. 6, pp. 28–31.Google Scholar
  45. 45.
    Jarvis, D.M. and Voss, D., IMPRESS Integrated Project-An Overview Paper, Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 583–591.Google Scholar
  46. 46.
  47. 47.
    Harding, R.A., Wickins, M., Wnag, H., et al., Development of a Turbulence-Free Casting Technique for Titanium Aluminides, Intermetallics, 2011, vol. 19, pp. 805–813.CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Lavery, N.P., Jarvis, D.J., and Voss, D., Emission Mitigation Potential of Lightweight Intermetallic TiAl Components, Intermetallics, 2011, vol. 19, pp. 787–792.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Kartavykh
    • 1
  • S. D. Kaloshkin
    • 1
  • V. V. Cherdyntsev
    • 1
  • M. V. Gorshenkov
    • 1
  • T. A. Sviridova
    • 1
  • Yu. V. Borisova
    • 1
  • F. S. Senatov
    • 1
  • A. V. Maksimkin
    • 1
  1. 1.National University of Science and Technology MISISMoscowRussia

Personalised recommendations