Skip to main content
Log in

Formation of zirconium-titanium solid solutions under the action of compression plasma flows and high-current electron beams

  • Physico-Chemical Principles of Materials Development
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The formation of solid solutions in titanium after its alloying with zirconium under the influence of compression plasma flows and high-current electron beams is considered in the work. It is established that these types of influence with absorbed energy density up to 30 J/cm2 result in the formation of the substitution solid solution α-Ti(Zr) on the basis of the low-temperature titanium phase. An increase in both pulse number and absorbed energy density provides a more uniform zirconium distribution in the modified layer. The microhardness of the modified layers of titanium is up to 5 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamyshanchenko, N.V., Nikulin, I.S., Neklyudov, I.M., and Volchok, O.I., Effect of Annealing Regimes at Titanium Mechanical and Thermal Treatment on the Peculiarities of Its Mechanical Behavior and Physical and Mechanical Properties, Perspekt. Mater., 2009, No. 6, pp. 30–35.

  2. Ando, T., Nakashima, K., Tsuchiyama, T., and Takaki, S., Microstructure and Mechanical Properties of a High Nitrogen Titanium Alloy, Mater. Sci. Eng. A, 2008, vol. 486, pp. 228–234.

    Article  Google Scholar 

  3. Abdullin, I.Sh., Kashapov, N.F., and Kudinov, V.V., Change of Structure and Cintent of Surface of Steel and Titanium Alloys under the Action of High-Frequency Discharge of Low Pressure, Perspekt. Mater., 2000, No. 1, pp. 56–63.

  4. Kopylova, I.V. and Popov, E.G., Titanium Alloy Hardening by Gas Explosion, Fiz. Khim. Obrab. Mater., 1998, No. 6, pp. 66–69.

  5. Rotshtein, V.P. Ivanov, Yu.F., Proskurovsky, D.I., Karlik, K.V., Shulepov, I.A., and Markov, A.B., Microstructure of the Near-Surface Layers of Austenitic Stainless Steels Irradiated with a Low-Energy, High-Current Electron Beams, Surf. Coat. Technol., 2004, vol. 180–181, pp. 382–386.

    Article  Google Scholar 

  6. Uglov, V.V., Cherenda, N.N., Stal’moshenok, E.K., Poluyanova, M.G., Astashinskii, V.M., and Kuz’mitskii, A.M., Effect of Titanium Concentration on the Structural-Phase State of Surface Layer of Carbon Steel Alloyed under the Action of Compression Plasma Flows, Inorg. Mater.: Appl. Res., 2010, vol. 1, no. 2, pp. 155–161.

    Article  Google Scholar 

  7. Cherenda, N.N., Shimanskii, V.I., Uglov, V.V., Koval’, N.N., Ivanov, Yu.F., and Teresov, A.D., Effect of Electronic Beam Pulse Energy and Length on’ Molybdenum-Titanium’ System Structural-Phase State, Fiz. Khim. Obrab. Mater., 2011, No. 1, pp. 14–21.

  8. Hsu, H.C., Wu, S.C., Sung, Y.C., and Ho, W.H., The Structure and Mechanical Properties of As-Cast Zr-Ti Alloys, J. Alloys Comp., 2009, vol. 488, pp. 279–283.

    Article  CAS  Google Scholar 

  9. Thibon, I., Ansel, D., and Gloriant, T., Interdiffusion in Beta-Ti-Zr Binary Alloys, J. Alloys Comp., 2009, vol. 470, pp. 127–133.

    Article  CAS  Google Scholar 

  10. Astashinskii, V.M., Bakanovich, G.I., Kuz’mitskii, A.M., and Min’ko, L.Ya., Work Regime Choice and Parameters of Magneto-Plasma Compressor Plasma, Inzh.-Fiz. Zh., 1992, vol. 62, pp. 386–390.

    Google Scholar 

  11. Koval’, N.N., Shchanin, P.M., Devyatkov, V.N., Tolkachev, V.S., and Vintizenko, L.G., A Facility for Metal Surface Treatment with an Electron Beam, Instrum. Exper. Techn., 2005, vol. 48, no. 1, 117–121

    Article  Google Scholar 

  12. Devyatkov, V.N., Koval, N.N., Schanin, P.M., Grigor’ev, V.P., and Koval, T.B., Generation and Propagation of Highcurrent Low-Energy Electron Beams, Laser Part. Beams, 2003, vol. 21, pp. 243–248.

    Article  CAS  Google Scholar 

  13. Uglov, V.V., Anishchik, V.M., Cherenda, N.N., et al., Compression Plasma Flow Interaction with Titaniumon-Steel System: Structure and Mechanical Properties, High Technol. Plasma Proc., 2004, vol. 8, pp. 605–615.

    CAS  Google Scholar 

  14. Budovskikh, E.A., About Convective Mechanism of Liquid-Phase Alloying of Metal Surface at Pulsed Plasma Impact, Fiz. Khim. Obrab. Mater., 1993, No. 1, pp. 59–66.

  15. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. T. 3, kn. 2 (State Diagrams of Binary Metal Systems), Vol. 3, Book 2, Moscow: Mashinostroenie, 2000.

    Google Scholar 

  16. Kapyrin, G.I., Titanovye splavy v mashinostroenii (Titanium Alloys in Engineering), Leningrad: Mashinostroenie, 1977.

    Google Scholar 

  17. Zolotorevskii, V.S., Mekhanicheskie ispytaniya i svoistva materialov (Mechanical Tests and Properties of Materials), Moscow: Metallurgiya, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Cherenda.

Additional information

Original Russian Text © N.N. Cherenda, V.I. Shymanski, V.V. Uglov, V.M. Astashinskii, A.M. Kuz’mitskii, N.N. Koval’, Yu.F. Ivanov, A.D. Teresov, 2012, published in Perspektivnye Materialy, 2012, No. 3, pp. 16–23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherenda, N.N., Shymanski, V.I., Uglov, V.V. et al. Formation of zirconium-titanium solid solutions under the action of compression plasma flows and high-current electron beams. Inorg. Mater. Appl. Res. 3, 365–370 (2012). https://doi.org/10.1134/S2075113312050024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113312050024

Keywords

Navigation