Advertisement

Inorganic Materials: Applied Research

, Volume 3, Issue 5, pp 365–370 | Cite as

Formation of zirconium-titanium solid solutions under the action of compression plasma flows and high-current electron beams

  • N. N. Cherenda
  • V. I. Shymanski
  • V. V. Uglov
  • V. M. Astashinskii
  • A. M. Kuz’mitskii
  • N. N. Koval’
  • Yu. F. Ivanov
  • A. D. Teresov
Physico-Chemical Principles of Materials Development

Abstract

The formation of solid solutions in titanium after its alloying with zirconium under the influence of compression plasma flows and high-current electron beams is considered in the work. It is established that these types of influence with absorbed energy density up to 30 J/cm2 result in the formation of the substitution solid solution α-Ti(Zr) on the basis of the low-temperature titanium phase. An increase in both pulse number and absorbed energy density provides a more uniform zirconium distribution in the modified layer. The microhardness of the modified layers of titanium is up to 5 GPa.

Keywords

compression plasma flows high-current electron beams titanium zirconium solid solution microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kamyshanchenko, N.V., Nikulin, I.S., Neklyudov, I.M., and Volchok, O.I., Effect of Annealing Regimes at Titanium Mechanical and Thermal Treatment on the Peculiarities of Its Mechanical Behavior and Physical and Mechanical Properties, Perspekt. Mater., 2009, No. 6, pp. 30–35.Google Scholar
  2. 2.
    Ando, T., Nakashima, K., Tsuchiyama, T., and Takaki, S., Microstructure and Mechanical Properties of a High Nitrogen Titanium Alloy, Mater. Sci. Eng. A, 2008, vol. 486, pp. 228–234.CrossRefGoogle Scholar
  3. 3.
    Abdullin, I.Sh., Kashapov, N.F., and Kudinov, V.V., Change of Structure and Cintent of Surface of Steel and Titanium Alloys under the Action of High-Frequency Discharge of Low Pressure, Perspekt. Mater., 2000, No. 1, pp. 56–63.Google Scholar
  4. 4.
    Kopylova, I.V. and Popov, E.G., Titanium Alloy Hardening by Gas Explosion, Fiz. Khim. Obrab. Mater., 1998, No. 6, pp. 66–69.Google Scholar
  5. 5.
    Rotshtein, V.P. Ivanov, Yu.F., Proskurovsky, D.I., Karlik, K.V., Shulepov, I.A., and Markov, A.B., Microstructure of the Near-Surface Layers of Austenitic Stainless Steels Irradiated with a Low-Energy, High-Current Electron Beams, Surf. Coat. Technol., 2004, vol. 180–181, pp. 382–386.CrossRefGoogle Scholar
  6. 6.
    Uglov, V.V., Cherenda, N.N., Stal’moshenok, E.K., Poluyanova, M.G., Astashinskii, V.M., and Kuz’mitskii, A.M., Effect of Titanium Concentration on the Structural-Phase State of Surface Layer of Carbon Steel Alloyed under the Action of Compression Plasma Flows, Inorg. Mater.: Appl. Res., 2010, vol. 1, no. 2, pp. 155–161.CrossRefGoogle Scholar
  7. 7.
    Cherenda, N.N., Shimanskii, V.I., Uglov, V.V., Koval’, N.N., Ivanov, Yu.F., and Teresov, A.D., Effect of Electronic Beam Pulse Energy and Length on’ Molybdenum-Titanium’ System Structural-Phase State, Fiz. Khim. Obrab. Mater., 2011, No. 1, pp. 14–21.Google Scholar
  8. 8.
    Hsu, H.C., Wu, S.C., Sung, Y.C., and Ho, W.H., The Structure and Mechanical Properties of As-Cast Zr-Ti Alloys, J. Alloys Comp., 2009, vol. 488, pp. 279–283.CrossRefGoogle Scholar
  9. 9.
    Thibon, I., Ansel, D., and Gloriant, T., Interdiffusion in Beta-Ti-Zr Binary Alloys, J. Alloys Comp., 2009, vol. 470, pp. 127–133.CrossRefGoogle Scholar
  10. 10.
    Astashinskii, V.M., Bakanovich, G.I., Kuz’mitskii, A.M., and Min’ko, L.Ya., Work Regime Choice and Parameters of Magneto-Plasma Compressor Plasma, Inzh.-Fiz. Zh., 1992, vol. 62, pp. 386–390.Google Scholar
  11. 11.
    Koval’, N.N., Shchanin, P.M., Devyatkov, V.N., Tolkachev, V.S., and Vintizenko, L.G., A Facility for Metal Surface Treatment with an Electron Beam, Instrum. Exper. Techn., 2005, vol. 48, no. 1, 117–121CrossRefGoogle Scholar
  12. 12.
    Devyatkov, V.N., Koval, N.N., Schanin, P.M., Grigor’ev, V.P., and Koval, T.B., Generation and Propagation of Highcurrent Low-Energy Electron Beams, Laser Part. Beams, 2003, vol. 21, pp. 243–248.CrossRefGoogle Scholar
  13. 13.
    Uglov, V.V., Anishchik, V.M., Cherenda, N.N., et al., Compression Plasma Flow Interaction with Titaniumon-Steel System: Structure and Mechanical Properties, High Technol. Plasma Proc., 2004, vol. 8, pp. 605–615.Google Scholar
  14. 14.
    Budovskikh, E.A., About Convective Mechanism of Liquid-Phase Alloying of Metal Surface at Pulsed Plasma Impact, Fiz. Khim. Obrab. Mater., 1993, No. 1, pp. 59–66.Google Scholar
  15. 15.
    Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. T. 3, kn. 2 (State Diagrams of Binary Metal Systems), Vol. 3, Book 2, Moscow: Mashinostroenie, 2000.Google Scholar
  16. 16.
    Kapyrin, G.I., Titanovye splavy v mashinostroenii (Titanium Alloys in Engineering), Leningrad: Mashinostroenie, 1977.Google Scholar
  17. 17.
    Zolotorevskii, V.S., Mekhanicheskie ispytaniya i svoistva materialov (Mechanical Tests and Properties of Materials), Moscow: Metallurgiya, 1974.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. N. Cherenda
    • 1
  • V. I. Shymanski
    • 1
  • V. V. Uglov
    • 1
  • V. M. Astashinskii
    • 2
  • A. M. Kuz’mitskii
    • 2
  • N. N. Koval’
    • 3
  • Yu. F. Ivanov
    • 3
  • A. D. Teresov
    • 3
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  3. 3.High Current Electronics Institute, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations