Inorganic Materials: Applied Research

, Volume 3, Issue 4, pp 323–328 | Cite as

Ceramic composition material for operation under extreme conditions

  • B. N. Dudkin
  • A. Yu. Bugaeva
  • G. G. Zainullin
  • V. N. Filippov


A ceramic material based on a corundum matrix formed by submicrocrystalline particles of aluminum oxide and filled with microsized particles of lanthanum hexaaluminate is obtained. The matrix is reinforced additionally by aluminum oxide nanofibers, and the fiber surface is modified by zirconium dioxide nanoparticles. All the components of the ceramic composite are synthesized by the sol-gel method. The composite has high strength and thermal properties. The coefficient of friction and abradability of the composite material make it possible to recommend its application for operation under dry friction conditions at high temperatures and in frictional units of fine mechanical instruments.


ceramic composites microstructure composite components sol-gel method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandon, D. and Kaplan, W.D., Microstructural Characterization of Materials Weinheim: Wiley, 1999; Moscow: Tekhnosfera, 2004.Google Scholar
  2. 2.
    Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.Google Scholar
  3. 3.
    Barinov, S.M. and Shevchenko, V.Ya., Prochnost’ tekhnicheskoi keramiki (The Hardness of Technical Ceramics), Moscow: Nauka, 1996.Google Scholar
  4. 4.
    Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Mechanical Engineering), Moscow: Nauchtekhizdat, 2003.Google Scholar
  5. 5.
    Dudkin, B.N., Bugaeva, A.Yu., Zainullin, G.G., and Filippov, V.N., Properties of Ceramical Corundum-Lanthanum Hexaaluminate Composite, Ogneupory Tekhn. Keramika, 2004, No. 12, pp. 14–18.Google Scholar
  6. 6.
    Dudkin, B.N. and Bugaeva, A.Yu., Submicrocrystalline ‘Corundum-Lanthanum Hexaaluminate’ Ceramics Modified by Yttrium Oxide, Trudy mezhdunar. nauchno-tekhnicheskoi konf. “Kompozity v narodnoe khozyaistvo” (Kompozit 2005) (Proc. Int. Sci.-Techn. Conf. ‘Composites into National Economy’ (Composite 2005)) Barnaul, 2005, pp. 82–86.Google Scholar
  7. 7.
    Galakhov, A.V. and Shevchenko, V.Ya., Effect of Gel-Formation Conditions on Phase Transformations in Polymer Alumo-Silicate Geles of Mullite Composition, Ogneupory, 1994, No. 1, pp. 8–11.Google Scholar
  8. 8.
    Viravathana, P. and Marr, D.W.M., Optical Trapping of Titania/Silica Core-Shell Colloidal Particles, J. Colloid Interface Sci., 2000, vol. 221, no. 2, pp. 301–307.CrossRefGoogle Scholar
  9. 9.
    Bugaeva, A.Yu., Effect of Yttrium Oxide on the Properties of Binary Aluminum-Containing Oxides and Ceramics on Their Base, Candidate Sci. (Chem.) Dissertation, Chelyabinsk: Inst. Chem. Ural. Branch Russ. Acad. Sci., 2003.Google Scholar
  10. 10.
    Dudkin, B.N., Bugaeva, A.Yu., and Zainullin, G.G., ’sol-Gel’ Method of Formation of Microstructure of Filled and Reinforced Ceramic Composite, Konstruktsii Kompozit. Mater., 2010, No. 1, pp. 9–15.Google Scholar
  11. 11.
    Dudkin, B.N., Bugaeva, A.Yu., Zainullin, G.G., and Filippov, V.N., Corundum/Lanthanum Hexaaluminate/Alumina Nanofiber Ceramic Composite, Inorg. Mater., 2010, vol. 46, no. 4, pp. 445–449.CrossRefGoogle Scholar
  12. 12.
    Padalko, A.G., Praktika goryachego izostaticheskogo pressovaniya neorganicheskikh materialov (Practice of Hot Isostatic Compressing of Inorganic Materials), Moscow: Akademkniga, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • B. N. Dudkin
    • 1
  • A. Yu. Bugaeva
    • 1
  • G. G. Zainullin
    • 1
  • V. N. Filippov
    • 2
  1. 1.Institute of Chemistry, Komi Science Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia
  2. 2.Institute of Geology, Komi Science Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations