Advertisement

Inorganic Materials: Applied Research

, Volume 3, Issue 2, pp 135–144 | Cite as

The effect of chemical composition and roughness of titanium nickelide surface on proliferative properties of mesenchymal stem cells

  • A. I. Lotkov
  • S. G. Psakh’e
  • L. L. Meisner
  • V. A. Matveeva
  • L. V. Artem’eva
  • S. N. Meisner
  • A. L. Matveev
Materials for Insuring Human Life Activity and Environment Protection

Abstract

The results of the investigation of the proliferation effect on a mesenchymal stem cell (MSC) culture and the estimates on cytotoxicity of surfaces of titanium nickelide specimens prepared using special mechanical and electrochemical methods and characterized by different morphology and roughness are presented. The specimens of the alloy based on titanium nickelide are shown not to exert any toxic action on the MSCs of rats. When cultivated in the presence of the tested materials or being on their surfaces, MSCs preserved their viability, adhesive and morphological properties, and the ability for in vitro proliferation. This was confirmed by the following methods: cell counting in a Goryaev chamber, MTT, flow cytometry, and light and fluorescent microscopy. It was revealed that the proliferation processes are weakly pronounced on the surface of TH1(B) specimens whose C10–11 class roughness was achieved by multistage mechanical grinding to “high luster” and subsequent electrolytic grinding. On the contrary, the C7 class roughness of the TH1(A) specimen surfaces achieved by chemical etching and subsequent electrolytic grinding is more optimal for MSC proliferation.

Keywords

titanium nickelide roughness mesenchymal stem cells of rats cytotoxicity proliferation biocompatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abugov, S.A., Puretskii, M.V., Rudenko, P.A., et al., Results of Endovascular Stenting of Bifurcation Stenosises of Sicks with Heart Ishemic Illness, Kardiologiya, 1998, No. 8, pp. 7–11.Google Scholar
  2. 2.
    Arablinskii, A.V., Rogan, S.V., and Sidel’nikov, A.V., Stenting of Coronar Artery in Clinical Practice, Kardiologiya, 2000, No. 9, pp. 100–105.Google Scholar
  3. 3.
    Kornilov, I.I., Belousov, O.K., and Kachur, E.V., Nikelid titana i drugie splavy s effektom pamyati (Titanium Nickelide and Other Shape Memory Alloys), Moscow: Nauka, 1977.Google Scholar
  4. 4.
    Lotkov, A.I., Khachin, V.N., Grishkov, V.N., Meisner, L.L., and Sivokha, V.P., Shape Memory Alloys, in Fizicheskaya mezomekhanika i komp’yuternoe konstruirovanie materialov (Physical Mesomechanics and Computer Construction of Materials), Novosibirsk: Nauka, 1995, vol. 2, pp. 202–213.Google Scholar
  5. 5.
    Zhuravlev, V.N. and Pushin, V.G., Splavy s termomekhanicheskoi pamyat’yu i ikh primenenie v meditsine (Alloys with Thermomechanical Memory and Their Use in Medicine), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2000.Google Scholar
  6. 6.
    Meisner, L.L., Mechanical and Physico-Chemical Properties of Titanium Nickelide Based Alloys with Thin Surface Layers Modified by Charged Particle Flows, Fiz. Mezomekh., 2004, vol. 7,Sp. Number, part 2, pp. 169–172.Google Scholar
  7. 7.
    Lotkov, A.I., Meisner, L.L., and Grishkov, V.N., Titanium Nickelide-Based Alloys: Surface Modification with Ion Beams, Plasma Flows, and Chemical Treatment, Phys. Met. Metallogr., 2005, vol. 99, no. 5, pp. 508–519.Google Scholar
  8. 8.
    Williams, D., Biocompatibility of Clinical Implant Materials, Boca Raton: CRC Press, 1981.Google Scholar
  9. 9.
    Shabalovskaya, S.A., Anderegg, J., Laab, F., et al., Surface Conditions of Nitinol Wires, Tubing and As-Cast Alloys. The Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment, J. Biomed. Mater. Res., 2003, vol. 65, pp. 193–203.CrossRefGoogle Scholar
  10. 10.
    Biosovmestimost’ (Biocompatibility), Sevast’yanov, V.I., Ed., Moscow: ITs VNII Geosistem, 1999.Google Scholar
  11. 11.
    Shakhov, V.P., Khlusov, I.A., Dambaev, G.S., et al., Methods of Cell Culture, Artificial Organs and Biomaterial Study, in: Vvedenie v metody kul’tury kletok, bioinzhenerii organov i tkanei (Introduction to the Cell Culture, Organ and Tissue Bioengineering Methods), Tomsk: STT, 2004.Google Scholar
  12. 12.
    Korzh, N.A., Kladchenko, L.A., and Malyshkina, S.V., Implantation Materials and Osteogenesis. Role of Optimization and Stimulation in Bone Reconstruction, Ortoped., Travmatol. Protezir., 2008, No. 4, pp. 5–14.Google Scholar
  13. 13.
    Vladimirskaya, E.V., Maiorova, O.A., Rumyantsev, S.A., and Rumyantsev, A.G., Stem Cells and Intercell Interactions, in Biologicheskie osnovy i perspektivy terapii stvolovymi kletkami (Biological Fundamentals and Perspectives of Therapy by Stem Cells), Moscow: Medpraktika, 2005.Google Scholar
  14. 14.
    Miller, D.C., Haberstroh, K.M., and Webster, T.J., PLGA Nanometer Surface Features Manipulate Fibronectin Interection for Improved Vascular Cell Adhesion, J. Biomed. Mater. Res., A, 2006, vol. 81, pp. 678–684.Google Scholar
  15. 15.
    Mosmann, T., Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J. Immunol. Meth., 1983, vol. 65, pp. 55–63.CrossRefGoogle Scholar
  16. 16.
    Tatarenko-Koz’mina, T.Yu., Poradovskaya, T.P., Kudinova, V.F., and Pavlova, T.E., Study of Mesenchymal Stromal Cells of Marrow-Predecessors of Osteoplasts on Biostable Composites, Sbornik nauchnykh rabot Sibirskogo gosudarstvennogo meditsinskogo universiteta “Estestvoznanie i gumanizm” (Collection of Scientific Papers of Siberian State Medical Univ. “Natural Science and Humanism”), Tomsk, 2005, vol. 2, part 2.Google Scholar
  17. 17.
    Plokhinskii, N.A., Biometriya (Biometry), Moscow: MGU, 1970.Google Scholar
  18. 18.
    Akimov, A.G., About Regularities of Protection Oxide Layers in Metal (Alloy)-Medium Systems, Zashchita Metallov, 1986, vol. 22, no. 6, pp. 879–886.Google Scholar
  19. 19.
    Meisner, L.L., Sivokha, V.P., Lotkov, A.I., and Barmina, E.G., Corrosion Properties of Quasibinary Section of TiNi-TiAu Alloys in Biochemical Solutions, Fiz. Khim. Obrab. Mater., 2006, no. 1, pp. 78–84.Google Scholar
  20. 20.
    Shabalovskaya, S.A., He, Tian., Andregg, J.W., et al., The Influence of Surface Oxides on the Distribution and Release of Nickel from Nitinol Wires, Biomaterials, 2009, vol. 30, no. 4, pp. 468–477.CrossRefGoogle Scholar
  21. 21.
    Anselme, K., Osteoblast Adhesion on Biomaterials, Biomaterials, 2000, no. 21, pp. 667–681.Google Scholar
  22. 22.
    Eisenbarth, E., Linez, P., Biehl, V., et al., Cell Orientation and Cytoskeleton Organization on Ground Titanium Surfaces, Biomolecular Eng., 2002, vol. 19, nos. 2–6, pp. 233–237.CrossRefGoogle Scholar
  23. 23.
    Pareta, R.A., Reising, A.B., Miller, et al., An Understanding of Enhanced Osteoblast Adhesion on Various Nanostructured Polymeric and Metallic Materials Prepared by Ionic Plasma Deposition, J. Biomed. Mater. Res., A, 2010, vol. 92, no. 3, pp. 1190–1201.Google Scholar
  24. 24.
    Marleta, J., Uptonac, J., Langerbo, R., and Vacantica, J.P., Transplantation of Cells in Matrices for Tissue Regeneration, Advan. Drag Delivery Rev., 1998, no. 3, pp. 165–182.Google Scholar
  25. 25.
    Miller, D.C., Haberstroh, R.M., and Webster, T.J., Mechanism(s) of Increased Vascular Cell Adhesion on Nanostructured Poly(lactic-co-glycolic acid) Films, J. Biomed. Mater. Res., A, 2005, vol. 73, pp. 476–484.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. I. Lotkov
    • 1
  • S. G. Psakh’e
    • 1
  • L. L. Meisner
    • 1
  • V. A. Matveeva
    • 2
  • L. V. Artem’eva
    • 2
  • S. N. Meisner
    • 1
  • A. L. Matveev
    • 3
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of Sciences (ISPMS SB RAS)TomskRussia
  2. 2.Institute of Chemical Biology and Fundamental Medicine, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk National Scientific Research UniversityNovosibirskRussia

Personalised recommendations