Inorganic Materials: Applied Research

, Volume 2, Issue 5, pp 425–427 | Cite as

Improvement of injection and radiation stability of nanosized dielectric films of MOS devices

  • V. V. Andreev
  • G. G. Bondarenko
  • A. M. Mihal’kov
  • A. A. Stolyarov
  • I. V. Solov’ev
Materials of Electronic
  • 26 Downloads

Abstract

The conditions of injection-thermal treatment of metal-oxide-semiconductor (MOS) structures are studied. It is demonstrated that injection-thermal treatment (ITT) makes it possible to detect and eliminate structures with coarse defects of isolation and charge defects nearly without reduction of operating performance of MOS based devices. It is established that injection-thermal treatment results in improvements of injection and radiation stability of nanosized dielectric films of MOS devices by their modification.

Keywords

MOS structure nanosized dielectric film test injection current charge state radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katerinich, I.I., Kurin, F.M., and Popov, V.D., Method of Radiation and Thermal Treatment and Increasing of Durability of MOP Integral Circuits, Vopr. At. Nauki Tekh., Ser. Fiz. Radiats. Vozd. Radioelektr. Apparat., 1996, nos. 3–4, pp. 127–132.Google Scholar
  2. 2.
    Knoll, M., Brauning, D., and Fahrner, W.R., Comparative Studies of Tunnel Injection and Irradiation on Metal Oxide Semiconductor Structures, J. Appl. Phys., 1982, vol. 53, no. 10, pp. 6946–6952.CrossRefGoogle Scholar
  3. 3.
    Andreev, V.V., Bednyakov, A.A., Novikov, L.S., Solov’ev, G.G., Stolyarov, A.A., and Loskutov, S.A., Comparative Study of Charge State of MOS-Structures upon Proton Irradiation and Charge Injection in Strong Electrical Fields, Vopr. At. Nauki Tekh. Ser. Fiz. Radiats. Vozd. Radioelektr. Apparat., 2002, nos. 1–2, pp. 61–66.Google Scholar
  4. 4.
    Arnold, D., Cartier, E., and DiMaria, D.J., Theory of High-Field Electron Transport and Impact Ionization in Silicon Dioxide, Phys. Rev. B: Condens. Matter, 1994, vol. 49, no. 15, pp. 10278–10297.CrossRefGoogle Scholar
  5. 5.
    Lombardo, S., Stathis, J.H., Linder, P., Pey, K.L., Palumbo, F., and Tung, C.H., Dielectric Breakdown Mechanisms in Gate Oxides, J. Appl. Phys., 2005, vol. 98, nos. 1–36, p. 121301.CrossRefGoogle Scholar
  6. 6.
    Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., Stolyarov, A.A., and Drach, V.E., Plasma and Injection Modification of Gate Dielectric in MOS Structures, Thin Solid Films, 2003, vol. 427, pp. 377–380.CrossRefGoogle Scholar
  7. 7.
    Andreev, V.V., Bondarenko, G.G., Stolyarov, A.A., Vasyutin, D.S., and Mikhal’kov, A.M., Study of Effect of Injection Modification Modes on Charge State of Undergate Dielectric of MOS-Devices, Perspekt. Mater., 2009, no. 2, pp. 45–51.Google Scholar
  8. 8.
    Andreev, V.V., Stolyarov, A.A., Vasyutin, D.S., and Mikhal’kov, A.M., Quality Control of Dielectric Layers of Integral Circuits and Devices of Microsystem Equipment, Naukoemk. Tekhnol., 2010, vol. 11, no. 7, pp. 44–52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Andreev
    • 1
  • G. G. Bondarenko
    • 2
  • A. M. Mihal’kov
    • 1
  • A. A. Stolyarov
    • 1
  • I. V. Solov’ev
    • 1
  1. 1.Kaluga BranchBauman Moscow State Technical UniversityKalugaRussia
  2. 2.R&D Institute for Promising Materials and TechnologiesMoscowRussia

Personalised recommendations