Advertisement

High-temperature Nb-Si composites. Part 1

Article

Abstract

The article presents an overview of the projects aimed at development of a new class of high-temperature Nb-Si composites consisting of a niobium matrix and a strengthener in the form of niobium silicides. Nb-Si binary diagrams and Nb-Cr-Si, Nb-Hf-Si, Nb-Ti-Si, and Nb-Si-Mo ternary diagrams, as well as Nb-Si-Ti-Cr and Nb-Si-Ti-Hf quaternary diagrams, are analyzed, on the basis of which the compositions of the composite materials are selected. Major methods of obtaining of the composites are considered, including directional solicitation. The main physicomechanical properties are analyzed: short- and long-term strength, destruction viscosity, elasticity modulus, thermal expansion, high-temperature strength, and protective coatings. The density of Nb-Si composites is 6.6–7.2 g/cm3, and the operating temperature is 1350°C, which is 200°C higher than temperature ability of monocrystals of nickel high-temperature alloys of the last generations.

Keywords

high-temperature composites Nb-Si composites directional solidification high-temperature strength 

References

  1. 1.
    Petrushin, N.V., Svetlov, I.L., Samoilov, A.I., Timofeeva, O.B., and Chabina, E.B., High-Temperature Phase and Structural Transformations in Single Crystals of Nickel Refractory Alloys Contained Rhenium and Ruthenium, Materialovedenie, 2008, no. 10–11, pp. 26–32.Google Scholar
  2. 2.
    Svetlov, I.L., Epishin, A.I., and Pirogov, E.N., Effect of Residual Stresses on Creep of Eutectic Composites, Mekh. Kompoz. Mater., 1985, no. 4, pp. 624–632.Google Scholar
  3. 3.
    Chang, K.M., Bewley, B.P., Sattley, J.A., and Jackson M.R., Cold-Crusible Directional Solidification of Refractory Metal-Silicide Eutectics, J. Met., 1992, vol. 44, no. 6, p. 59.Google Scholar
  4. 4.
    Balsone, S.J., Bewley, B.P., Jackson, M.R., Subramanian, P.R., Zhao, H.-C., Chatterjee, A., and Heffernan, T.M., Materials beyond Superalloys-Exploiting High Temperature Composites, in Structural Intermetallics, Darolia, R., Lewandowski, J.J., Liu, C.T., and Martin, P.L., Eds., 2001.Google Scholar
  5. 5.
    Drawin, S., The European ULTMAT Project: Properties of New Mo and Nb Silicide Based Materials, Mater. Res. Soc. Symp. Proc., 2009, vol. 1128.Google Scholar
  6. 6.
    Phase Diagrams of Binary Metal Systems. A Handbook, Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 2001, Vol. 3, Part 1, [in Russian].Google Scholar
  7. 7.
    Ji-Cheng, Zhao., Bewley, B.P., Bewley, B.P., and Peluso, L.A., Alloying and Phase Stability in Nb Silicide In-Situ Composite, in Structural Intermetallics, Darolia, R., Lewandowski, J.J., Liu, C.T., and Martin, P.L., Eds., 2001.Google Scholar
  8. 8.
    Shi Yu Qu, Ya Fang Han, Yong Wang Kang, Effects of Ti, Al and Hf on Niobium Silicides Formation in the Nb-Si In-Situ Composites, Sci. China Series: Technol. Sci., 2009, vol. 52, no. 1, pp. 37–40.CrossRefGoogle Scholar
  9. 9.
    Geng, Jie., Shao, G., and Tsakiropoulos, P., Study of Three-Phase Equilibrium in the Nb-Rich Corner of Nb-Si-Cr System, Intermetallics, 2006, vol. 14, pp. 832–837.CrossRefGoogle Scholar
  10. 10.
    Bewley, B.P., Yang, Y., Cascy, R.L., Jackson, M.R., and Chang, Y., Effect of Cr Addition and the Phase Equilibrium of the Nb-Si System, Mater. Res. Soc. Symp. Proc., 2007, vol. 980, pp. 333–338.Google Scholar
  11. 11.
    Qing, H., Chao, M., Xinqinq, Z., and Huibin, Y., Phase Equilibria in Nb-Si-Mo Ternary Alloys at 1273 and 2073 K, Chinese J. Aeronauties, 2008, pp. 448–454.Google Scholar
  12. 12.
    Bewlay, B.P, Jackson, M.R, and Gigliotti, M.F.X, Niobium Silicide High Temperature In Situ Composites, in Intermetallic Compounds, Principles and Practice-Volume 3: Progress, Westbrook, J.H. and Fleischer, R.I., Eds., Chapter 26, New York: Wiley, 2002, vol. 3, pp. 541–560.CrossRefGoogle Scholar
  13. 13.
    Yang, Ying., Bewlay, B.P., Shuanglin, C., and Chang, Y.A., Application of Phase Diagram Calculations to Development of New Ultra-High Temperature Structural Materials, Trans. Nonferrous Soc. China, 2007, vol. 17, pp. 1396–1404.CrossRefGoogle Scholar
  14. 14.
    Subramanian, P.R., Mendiratta, M.G., and Dimiduk, D.M., Development of Nb-Based Advanced Intermetallic Alloys for Structural Application, J. Met., 1996, vol. 48, no. 1, pp. 33–38.Google Scholar
  15. 15.
    Bewley, B.P., Jackson, M.R., and Subramanian, P.R., Processing High Temperature Refractory Metall Silicide in Situ Composites, J. Met., 1999, vol. 51, no. 4, pp. 32–36.Google Scholar
  16. 16.
    US Patent 7 296 616 B2.Google Scholar
  17. 17.
    Bewlay, B.P., Bancheri, S.F., and Klug, F.J., Ceramic Cores for Casting Superalloys and Refractory Metal Composites, and Related Processes, Pub. No: 2009/0050286 A1.Google Scholar
  18. 18.
    Zayavka US 2009/0197758 A1.Google Scholar
  19. 19.
    Patent ER 1818121 A1.Google Scholar
  20. 20.
    Zayavka US 2003/0190235 A1.Google Scholar
  21. 21.
    Bewley, B.P., Jackson, M.R., Zhao, J.C., and Subramanian, P.R., A Review of Very-High-Temperature Nb-Silicide-Based Composites, Metall. Mater. Trans., A, 2003, vol. 34, no. 10, pp. 2043–2052.CrossRefGoogle Scholar
  22. 22.
  23. 23.
    US Patent 6059015.Google Scholar
  24. 24.
    Kimura, Y., Yamaoka, H., Secido, N., and Mishima, Y., Processing, Microstructure, Mechanical Properties of (Nb)/Nb5Si3 Two-Phase Alloys, Metall. Mater. Trans., A, 2005, vol. 36, no. 3, pp. 483–488.CrossRefGoogle Scholar
  25. 25.
    Svetlov, I.L., Abuzin, Yu.A., Babich, B.N., Vlasenko, S.Ya., Efimochkin, I.Yu., and Timofeeva, O.B., High Temperature Niobium Composites Hardened by Niobium Silicides, Zh. Funkts. Mater., 2007, vol. 1, no. 2, pp. 48–53.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.All-Russia Scientific Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations