Inorganic Materials: Applied Research

, Volume 2, Issue 1, pp 70–75 | Cite as

Orientation and substructure of chemoepitaxial rutile films

  • V. M. Ievlev
  • K. A. Solntsev
  • A. A. Sinel’nikov
  • S. A. Soldatenko


The orientation and substructure of rutile films obtained by oxidation of oriented Ti films are investigated by transmission electron microscopy and high-energy electron diffraction. It is shown that the textures of the oxide are defined by the textures of the initial metal film. A set of orientation relations between the crystal lattices of titanium and rutile is established, and the optimal orientation relation is determined. The dislocation substructure of the high-angle 90° boundaries in TiO2 films is revealed. The size and orientation mismatch at this boundary is compensated by the grain boundary lattice dislocations.


titanium oxidation titanium dioxide chemoepitaxy orientation substructure texture orientation relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chohg, L.H., Mallik, K., de Groot, C.H., and Kersting, R., The Structural and Electrical Properties of Thermally Grown TiO2 Thin Films, J. Phys.: Condens. Matter., 2006, vol. 18, pp. 645–657.CrossRefGoogle Scholar
  2. 2.
    Sawa, A., Resistive Switching in Transition Metal Oxides, Materials Today, 2008, vol. 11, no. 6, pp. 28–36.CrossRefGoogle Scholar
  3. 3.
    Belonogov, E.K., Bugakov, A.V., Ievlev, V.M., et al., Orientation Relations in the Ni-NiO System as Criteria for the Prediction, Vestn. Vor. Gos. Tekh.Univ., Ser. Materialovedenie, 2003, vol. 1, no. 14, pp. 33–39.Google Scholar
  4. 4.
    Barsukova, L.V., Anokhin, V.Z., and Khoviv, A.M., Thermal and Laser-Thermal Oxidation of Titanium in the Temperature Range of 773–973 K, Izv. Ross. Acad. Nauk., Neorg. Materialy, 1992, vol. 28, no. 5, pp. 1019–1021.Google Scholar
  5. 5.
    Chaplanov, A.M. and Shibko, A.N., Effect of Polarised Laser Radiation on the Oxidation of Titanium Films upon Thermal Annealing, Kvantovaya Elektronika, 2000, vol. 30, no. 6, pp. 532–534 [Quantum Electron. (Engl. Transl.), vol. 30, no. 6, p. 143].CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Ma, X., Chen, P., and Yang, D., Crystallization Behaviors of TiO2 Films Derived from Thermal Oxidation of Evaporated and Sputtered Titanium Films, J. Alloys Compounds, 2009, vol. 480, no. 2, pp. 938–941.CrossRefGoogle Scholar
  7. 7.
    Solntsev, K.A., Shustorovich, E.M., and Buslaev, Yu.A., Consrtructing of Thin-Walled Ceramics (OCTC), Dokl. Akad. Nauk, 2001, vol. 378, no. 4, pp. 492–499 [Dokl. (Engl. Transl.), vol. 378, nos. 4–6, p. 143].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. M. Ievlev
    • 1
  • K. A. Solntsev
    • 2
  • A. A. Sinel’nikov
    • 1
  • S. A. Soldatenko
    • 3
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations